Suppr超能文献

使用k-d树数据结构加速蒙特卡罗模拟。

Using the k-d Tree Data Structure to Accelerate Monte Carlo Simulations.

作者信息

Chen Qile P, Xue Bai, Siepmann J Ilja

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.

Department of Chemistry and Chemical Theory Center, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States.

出版信息

J Chem Theory Comput. 2017 Apr 11;13(4):1556-1565. doi: 10.1021/acs.jctc.6b01222. Epub 2017 Mar 6.

Abstract

The k-d tree data structure is implemented in a Monte Carlo (MC) molecular simulation program to accelerate the range search for particles or interaction sites within the cutoff distance when Lennard-Jones and Coulomb interactions are computed. MC simulations are performed for different molecules in various ensembles to assess the efficiency enhancements due to the k-d tree data structure. It is found that the use of k-d trees accelerates significantly simulations for Lennard-Jones particles in the NVT and NVT-Gibbs ensembles and for n-butane and 2,4,6,8,10,12,14,16,18,20,22-undecamethylpentacosane represented by the TraPPE-UA force field in the NpT ensemble. Simulations for TraPPE-UA ethanol in the NpT ensemble and for the rigid TIP4P water model in the Gibbs ensemble gain slightly in efficiency with the k-d tree, whereas simulations for TIP4P water in the NpT ensemble do not benefit from the use of the k-d tree. The speed-up can be attributed to the reduction in the number of distance calculations in the range search from scaling as [Formula: see text] to [Formula: see text]. In addition, these tests suggest that the efficiency gain from the use of the k-d tree data structure depends on the flexibility of the molecular model (requiring configurational-bias MC moves to sample changes in conformation), on the ensemble (with open ensembles requiring special MC moves to aid particle transfers), and on the number of interaction sites per molecule (with compact multisite models not seeing an efficiency gain). Overall, the use of the k-d tree data structure can substantially enhance MC simulation efficiency for a variety of systems, and it will enable simulations for larger system sizes in the future.

摘要

k-d树数据结构被应用于一个蒙特卡罗(MC)分子模拟程序中,以在计算 Lennard-Jones 和库仑相互作用时,加速对截止距离内粒子或相互作用位点的范围搜索。针对不同分子在各种系综中进行 MC 模拟,以评估由于 k-d 树数据结构带来的效率提升。研究发现,对于 NVT 和 NVT-吉布斯系综中的 Lennard-Jones 粒子,以及 NpT 系综中由 TraPPE-UA 力场表示的正丁烷和 2,4,6,8,10,12,14,16,18,20,22-十一甲基二十五烷,使用 k-d 树能显著加速模拟。对于 NpT 系综中的 TraPPE-UA 乙醇以及吉布斯系综中的刚性 TIP4P 水模型,使用 k-d 树时效率略有提高,而对于 NpT 系综中的 TIP4P 水,使用 k-d 树并无益处。加速可归因于范围搜索中距离计算数量从按[公式:见原文]缩放减少到按[公式:见原文]缩放。此外,这些测试表明,使用 k-d 树数据结构带来的效率提升取决于分子模型的灵活性(需要构型偏置 MC 移动来采样构象变化)、系综(开放系综需要特殊的 MC 移动来辅助粒子转移)以及每个分子的相互作用位点数量(紧凑的多位点模型未观察到效率提升)。总体而言,使用 k-d 树数据结构可大幅提高各种系统的 MC 模拟效率,并将在未来实现更大系统规模的模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验