Zong Jing, Meng Dong
Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, USA.
J Chem Phys. 2020 Oct 14;153(14):144104. doi: 10.1063/5.0013627.
We propose and develop a mesoscale particle-in-field simulation scheme, the Field-Accelerated Monte Carlo (FAMC) method, for speeding up particle-based continuum Monte Carlo (CMC) simulations based on soft interacting models. A key difference from the previously reported single-chain-in-mean-field method [K. C. Daoulas and M. Müller, J. Chem. Phys. 125, 184904 (2006)] is that the auxiliary fields in FAMC are constructed based on lattice-independent interacting potentials. As a result, FMAC simulations asymptotically approach CMC simulations with an increase in the lattice resolution of the auxiliary fields and are able to reproduce structural properties at morphology, conformation, and segment levels. A suite of schemes for computing and updating the auxiliary fields in FAMC simulations are developed in tandem to further enhance the computational efficiency of the method. The capacity of the FAMC method is demonstrated and tested against CMC simulations in simulating polymer solutions with explicit solvent under the canonical (nVT) ensemble and stress-free mircophase formation under the isothermal-isobaric (nPT) ensemble. In both cases, FAMC simulations reproduce structure properties with quantitative accuracy at a fraction of the computational cost.
我们提出并开发了一种中尺度场粒子模拟方案,即场加速蒙特卡罗(FAMC)方法,用于加速基于软相互作用模型的基于粒子的连续介质蒙特卡罗(CMC)模拟。与先前报道的单链平均场方法[K. C. Daoulas和M. Müller,《化学物理杂志》125, 184904 (2006)]的一个关键区别在于,FAMC中的辅助场是基于与晶格无关的相互作用势构建的。因此,随着辅助场晶格分辨率的提高,FMAC模拟渐近地趋近于CMC模拟,并且能够在形态、构象和链段水平上再现结构性质。同时开发了一套用于在FAMC模拟中计算和更新辅助场的方案,以进一步提高该方法的计算效率。在正则(nVT)系综下模拟具有明确溶剂的聚合物溶液以及在等温等压(nPT)系综下模拟无应力微相形成时,针对CMC模拟对FAMC方法的能力进行了演示和测试。在这两种情况下,FAMC模拟都能以计算成本的一小部分定量准确地再现结构性质。