Suppr超能文献

作为抑郁症治疗结果调节因素的预后指数(PI):结合多个变量以指导风险分层阶梯式护理模式的概念验证。

A prognostic index (PI) as a moderator of outcomes in the treatment of depression: A proof of concept combining multiple variables to inform risk-stratified stepped care models.

作者信息

Lorenzo-Luaces Lorenzo, DeRubeis Robert J, van Straten Annemieke, Tiemens Bea

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Affect Disord. 2017 Apr 15;213:78-85. doi: 10.1016/j.jad.2017.02.010. Epub 2017 Feb 7.

Abstract

BACKGROUND

Prognostic indices (PIs) combining variables to predict future depression risk may help guide the selection of treatments that differ in intensity. We develop a PI and show its promise in guiding treatment decisions between treatment as usual (TAU), treatment starting with a low-intensity treatment (brief therapy (BT)), or treatment starting with a high-intensity treatment intervention (cognitive-behavioral therapy (CBT)).

METHODS

We utilized data from depressed patients (N=622) who participated in a randomized comparison of TAU, BT, and CBT in which no statistically significant differences in the primary outcomes emerged between the three treatments. We developed a PI by predicting depression risk at follow-up using a LASSO-style bootstrap variable selection procedure. We then examined between-treatment differences in outcome as a function of the PI.

RESULTS

Unemployment, depression severity, hostility, sleep problems, and lower positive emotionality at baseline predicted a lower likelihood of recovery across treatments. The PI incorporating these variables produced a fair classification accuracy (c=0.73). Among patients with a high PI (75% percent of the sample), recovery rates were high and did not differ between treatments (79-86%). Among the patients with the poorest prognosis, recovery rates were substantially higher in the CBT condition (60%) than in TAU (39%) or BT (44%).

LIMITATIONS

No information on additional treatment sought. Prospective tests needed.

CONCLUSION

Replicable PIs may aid treatment selection and help streamline stepped models of care. Differences between treatments for depression that differ in intensity may only emerge for patients with the poorest prognosis.

摘要

背景

结合多种变量来预测未来抑郁风险的预后指数(PIs)可能有助于指导强度不同的治疗方案的选择。我们开发了一种预后指数,并展示了其在指导常规治疗(TAU)、以低强度治疗开始(简短治疗(BT))或高强度治疗干预(认知行为疗法(CBT))之间的治疗决策方面的前景。

方法

我们利用了来自抑郁症患者(N = 622)的数据,这些患者参与了TAU、BT和CBT的随机对照试验,三种治疗在主要结局上没有统计学显著差异。我们通过使用套索式自助法变量选择程序预测随访时的抑郁风险来开发一种预后指数。然后,我们研究了作为预后指数函数的治疗组间结局差异。

结果

基线时的失业、抑郁严重程度、敌意、睡眠问题以及较低的积极情绪预测了所有治疗中康复可能性较低。纳入这些变量的预后指数产生了较好的分类准确率(c = 0.73)。在预后指数较高的患者中(样本的75%),康复率较高,且治疗组间无差异(79 - 86%)。在预后最差的患者中,CBT组的康复率(60%)显著高于TAU组(39%)或BT组(44%)。

局限性

未获取关于寻求额外治疗的信息。需要进行前瞻性测试。

结论

可重复的预后指数可能有助于治疗选择,并有助于简化分级护理模式。强度不同的抑郁症治疗之间的差异可能仅在预后最差的患者中出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验