Istituto Nanoscienze-CNR, Lecce, Italy.
Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Italy.
J Chem Phys. 2017 Feb 14;146(6):064105. doi: 10.1063/1.4975092.
The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embedding contributions. In particular, these models can also be efficiently employed to replace the exact KED in meta-Generalized Gradient Approximation (meta-GGA) exchange-correlation functionals allowing to extend the subsystem DFT applicability to the meta-GGA level of theory. Here, we present a two-dimensional scan of semilocal KED models as linear functionals of the reduced gradient and of the reduced Laplacian, for atoms and weakly bound molecular systems. We find that several models can perform well but in any case the Laplacian contribution is extremely important to model the local features of the KED. Indeed a simple model constructed as the sum of Thomas-Fermi KED and 1/6 of the Laplacian of the density yields the best accuracy for atoms and weakly bound molecular systems. These KED models are tested within subsystem DFT with various meta-GGA exchange-correlation functionals for non-bonded systems, showing a good accuracy of the method.
发展动力学密度(KED)的半局部模型是密度泛函理论(DFT)中的一个重要课题。对于子体系 DFT 来说尤其如此,这些模型对于构建所需的非加性嵌入贡献是必要的。特别是,这些模型还可以有效地用于替代精确的元广义梯度近似(meta-GGA)交换相关泛函中的 KED,从而允许将子体系 DFT 的适用性扩展到 meta-GGA 理论水平。在这里,我们对原子和弱束缚分子体系的半局部 KED 模型进行了二维扫描,这些模型是缩减梯度和缩减拉普拉斯算子的线性函数。我们发现,有几个模型可以表现良好,但在任何情况下,拉普拉斯算子的贡献对于模型 KED 的局部特征都非常重要。事实上,一个简单的模型可以构造为托马斯-费米 KED 和密度拉普拉斯算子的 1/6 的和,对于原子和弱束缚分子体系,该模型具有最佳的准确性。我们在非键合体系的子体系 DFT 中用各种 meta-GGA 交换相关泛函测试了这些 KED 模型,结果表明该方法具有很好的准确性。