Sansone Pasquale, Berishaj Marjan, Rajasekhar Vinagolu K, Ceccarelli Claudio, Chang Qing, Strillacci Antonio, Savini Claudia, Shapiro Lauren, Bowman Robert L, Mastroleo Chiara, De Carolis Sabrina, Daly Laura, Benito-Martin Alberto, Perna Fabiana, Fabbri Nicola, Healey John H, Spisni Enzo, Cricca Monica, Lyden David, Bonafé Massimiliano, Bromberg Jacqueline
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy.
Cancer Res. 2017 Apr 15;77(8):1927-1941. doi: 10.1158/0008-5472.CAN-16-2129. Epub 2017 Feb 15.
The hypothesis that microvesicle-mediated miRNA transfer converts noncancer stem cells into cancer stem cells (CSC) leading to therapy resistance remains poorly investigated. Here we provide direct evidence supporting this hypothesis, by demonstrating how microvesicles derived from cancer-associated fibroblasts (CAF) transfer miR-221 to promote hormonal therapy resistance (HTR) in models of luminal breast cancer. We determined that CAF-derived microvesicles horizontally transferred miR-221 to tumor cells and, in combination with hormone therapy, activated an ER/Notch feed-forward loop responsible for the generation of CD133 CSCs. Importantly, microvesicles from patients with HTR metastatic disease expressed high levels of miR-221. We further determined that the IL6-pStat3 pathway promoted the biogenesis of onco-miR-221 CAF microvesicles and established stromal CSC niches in experimental and patient-derived breast cancer models. Coinjection of patient-derived CAFs from bone metastases led to HTR tumors, which was reversed with IL6R blockade. Finally, we generated patient-derived xenograft (PDX) models from patient-derived HTR bone metastases and analyzed tumor cells, stroma, and microvesicles. Murine and human CAFs were enriched in HTR tumors expressing high levels of CD133 cells. Depletion of murine CAFs from PDX restored sensitivity to HT, with a concurrent reduction of CD133 CSCs. Conversely, in models of CD133, HT-sensitive cancer cells, both murine and human CAFs promoted HT resistance via the generation of CD133 CSCs that expressed low levels of estrogen receptor alpha. Overall, our results illuminate how microvesicle-mediated horizontal transfer of genetic material from host stromal cells to cancer cells triggers the evolution of therapy-resistant metastases, with potentially broad implications for their control. .
微泡介导的miRNA转移将非癌干细胞转化为癌干细胞(CSC)从而导致治疗耐药性这一假说仍未得到充分研究。在此,我们通过证明源自癌症相关成纤维细胞(CAF)的微泡如何转移miR-221以促进腔面型乳腺癌模型中的激素治疗耐药性(HTR),提供了支持这一假说的直接证据。我们确定,CAF衍生的微泡将miR-221水平转移至肿瘤细胞,并与激素治疗相结合,激活了一个负责生成CD133 CSC的ER/Notch前馈环。重要的是,来自HTR转移性疾病患者的微泡表达高水平的miR-221。我们进一步确定,IL6-pStat3通路促进了致癌miR-221 CAF微泡的生物合成,并在实验性和患者来源的乳腺癌模型中建立了基质CSC龛。从骨转移患者来源的CAF共同注射导致HTR肿瘤,而IL6R阻断可逆转这一情况。最后,我们从患者来源的HTR骨转移中生成了患者来源的异种移植(PDX)模型,并分析了肿瘤细胞、基质和微泡。小鼠和人CAF在表达高水平CD133细胞的HTR肿瘤中富集。从PDX中去除小鼠CAF可恢复对HT的敏感性,同时CD133 CSC减少。相反,在CD133、HT敏感癌细胞模型中,小鼠和人CAF均通过生成低水平表达雌激素受体α的CD133 CSC促进HT耐药性。总体而言,我们的结果阐明了微泡介导的遗传物质从宿主基质细胞向癌细胞的水平转移如何触发治疗耐药性转移的演变,这对其控制可能具有广泛的意义。