Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany.
Department of Statistics, Iowa State University, Ames, IA, USA.
J Exp Bot. 2017 Jan 1;68(3):403-414. doi: 10.1093/jxb/erw422.
Seminal roots of maize are pivotal for early seedling establishment. The maize mutant rootless concerning crown and seminal roots (rtcs) is defective in seminal root initiation during embryogenesis. In this study, the transcriptomes of wild-type and rtcs embryos were analyzed by RNA-Seq based on histological results at three stages of seminal root primordia formation. Hierarchical clustering highlighted that samples of each genotype grouped together along development. Determination of their gene activity status revealed hundreds of genes specifically transcribed in wild-type or rtcs embryos, while K-mean clustering revealed changes in gene expression dynamics between wild-type and rtcs during embryo development. Pairwise comparisons of rtcs and wild-type embryo transcriptomes identified 131 transcription factors among 3526 differentially expressed genes [false discovery rate (FDR) <5% and |log2Fc|≥1]. Among those, functional annotation highlighted genes involved in cell cycle control and phytohormone action, particularly auxin signaling. Moreover, in silico promoter analyses identified putative RTCS target genes associated with transcription factor action and hormone metabolism and signaling. Significantly, non-syntenic genes that emerged after the separation of maize and sorghum were over-represented among genes displaying RTCS-dependent expression during seminal root primordia formation. This might suggest that these non-syntenic genes came under the transcriptional control of the syntenic gene rtcs during seminal root evolution. Taken together, this study provides first insights into the molecular framework underlying seminal root initiation in maize and provides a starting point for further investigations of the molecular networks underlying RTCS-dependent seminal root initiation.
玉米的胚根对于早期幼苗的建立至关重要。玉米突变体无根冠和胚根(rtcs)在胚胎发生过程中胚根起始时发生缺陷。在这项研究中,基于胚根原基形成的三个阶段的组织学结果,通过 RNA-Seq 分析了野生型和 rtcs 胚胎的转录组。层次聚类突出显示了每个基因型的样本沿着发育分组在一起。确定它们的基因活性状态表明数百个基因在野生型或 rtcs 胚胎中特异性转录,而 K-均值聚类揭示了在胚胎发育过程中野生型和 rtcs 之间基因表达动态的变化。rtcs 和野生型胚胎转录组的成对比较确定了 3526 个差异表达基因中的 131 个转录因子[错误发现率(FDR)<5%和|log2Fc|≥1]。其中,功能注释突出了涉及细胞周期控制和植物激素作用的基因,特别是生长素信号。此外,在计算机上对启动子的分析确定了与转录因子作用和激素代谢和信号转导相关的推定 RTCS 靶基因。重要的是,在玉米和高粱分离后出现的非同源基因在显示 RTCS 依赖于胚根原基形成过程中的表达的基因中过度表达。这可能表明这些非同源基因在胚根进化过程中受同源基因 rtcs 的转录控制。总之,本研究首次提供了对玉米胚根起始分子框架的深入了解,并为进一步研究 RTCS 依赖的胚根起始的分子网络提供了起点。