Suppr超能文献

玉米中基因调控网络揭示的组织特异性转录调控

Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.

机构信息

Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA.

School of Life Sciences, Tsinghua University, Beijing, 100084, China.

出版信息

BMC Plant Biol. 2018 Jun 7;18(1):111. doi: 10.1186/s12870-018-1329-y.

Abstract

BACKGROUND

Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize.

RESULTS

Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm.

CONCLUSIONS

By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code and data are available at Github ( https://github.com/timedreamer/maize_tissue-specific_GRN ).

摘要

背景

转录因子(TFs)是能够与 DNA 序列结合并调节基因表达的蛋白质。许多 TFs 是真核生物中细胞的主调控因子,有助于组织特异性和细胞类型特异性基因表达模式。玉米作为一种模式生物已有一百多年的历史,但人们对其通过 TFs 进行组织特异性基因调控知之甚少。在这项研究中,我们使用网络方法阐明了玉米四种组织(叶、根、SAM 和种子)中的基因调控网络(GRNs)。我们利用 GENIE3,这是一种结合大量 RNA-Seq 表达数据的机器学习算法,构建了四个组织特异性 GRNs。与其他一些技术不同,这种方法不受高质量位置加权矩阵(PWM)的限制,因此可以预测玉米中超过 2000 个 TF 的 GRNs。

结果

尽管许多 TF 在多种组织中表达,但多层次分析预测了许多转录因子的组织特异性调节功能。一些研究充分的 TF 出现在四个组织特异性 GRNs 中,GRN 预测与这些例子中的许多已发表结果相匹配。我们的 GRNs 也通过 ChIP-Seq 数据集(KN1、FEA4 和 O2)进行了验证。为每个组织确定了关键 TF,并与每个组织的关键调节剂相匹配,包括 GO 富集和该组织已知调节因子的身份。我们还通过使用 MCL 算法进行聚类分析在每个网络中找到了功能模块。

结论

通过结合公开的全基因组表达数据和网络分析,我们可以在玉米中揭示组织水平分辨率的 GRNs。由于 ChIP-Seq 和 PWM 在几种模式生物中仍然有限,我们的研究提供了一个统一的平台,可以适应任何具有全基因组表达数据的物种来构建 GRNs。我们还提供了一个公开可用的数据库,即玉米组织特异性 GRN(mGRN,https://www.bio.fsu.edu/mcginnislab/mgrn/),方便查询。所有源代码和数据都可在 Github(https://github.com/timedreamer/maize_tissue-specific_GRN)上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/774b/6040155/8e193fc42144/12870_2018_1329_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验