Fuels and Energy Technology Institute & Department of Chemical Engineering, Curtin University , Perth, Western Australia 6102, Australia.
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, Hunan, China.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8121-8133. doi: 10.1021/acsami.6b16180. Epub 2017 Feb 22.
Rechargeable Zn-air battery is limited by the sluggish kinetics and poor durability of the oxygen catalysts. In this Research Article, a new bifunctional oxygen catalyst has been developed through embedding the ultrafine NiFeO nanoparticles (NPs) in a porous amorphous MnO layer, in which the NiFeO-core contributes to the high activity for the oxygen evolution reaction (OER) and the amorphous MnO-shell functions as active phase for the oxygen reduction reaction (ORR), promoted by the synergistic effect between the NiFeO core and MnO shell. The synergistic effect is related to the electron drawing of NiFeO core from MnO shell, which decreases the affinity and adsorption energy of oxygen on MnO shell and significantly increases the kinetics of ORR. The electrocatalytic activity and durability of NiFeO@MnO depends strongly on the NiFeO:MnO ratio. NiFeO@MnO with NiFeO:MnO weight ratio of 1:0.8 shows the best performance for reversible ORR and OER, with a potential gap (ΔE) of 0.792 V to achieve a current density of 3 mA cm for ORR (E) and 5 mA cm for OER (E) in 0.1 M KOH solution. The high activity of the NiFeO@MnO(1:0.8) has been demonstrated in a Zn-air battery. Zn-air battery fabricated using the NiFeO@MnO(1:0.8) oxygen electrode shows similar initial performance with that of Pt-Ir/C oxygen electrode but a much better durability under charge and discharge cycles as the result of the structure confinement effect of amorphous MnO. The results demonstrate NiFeO@MnO as an effective bifunctional oxygen catalysts for rechargeable metal-air batteries.
可充电锌空气电池受到氧气催化剂动力学缓慢和耐久性差的限制。在这篇研究文章中,通过将超细微的 NiFeO 纳米粒子 (NPs) 嵌入多孔非晶 MnO 层中,开发了一种新型的双功能氧气催化剂。其中,NiFeO 核有助于高活性的析氧反应 (OER),非晶 MnO 壳作为氧还原反应 (ORR) 的活性相,这是由 NiFeO 核和 MnO 壳之间的协同作用促进的。协同作用与 NiFeO 核从 MnO 壳中拉电子有关,这降低了氧气在 MnO 壳上的亲和力和吸附能,显著提高了 ORR 的动力学。NiFeO@MnO 的电催化活性和耐久性强烈依赖于 NiFeO:MnO 的比例。NiFeO@MnO 中 NiFeO:MnO 的重量比为 1:0.8 时,对可逆 ORR 和 OER 表现出最佳性能,在 0.1 M KOH 溶液中,ORR(E)达到 3 mA cm 时的电位差 (ΔE)为 0.792 V,OER(E)达到 5 mA cm 时的电位差为 0.792 V。在锌空气电池中证明了 NiFeO@MnO(1:0.8)的高活性。使用 NiFeO@MnO(1:0.8)氧气电极制造的锌空气电池具有与 Pt-Ir/C 氧气电极相似的初始性能,但在充放电循环下具有更好的耐久性,这是由于非晶 MnO 的结构限制效应。结果表明,NiFeO@MnO 是一种有效的可充电金属空气电池双功能氧气催化剂。