Department of Materials Science and Engineering, and ‡Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8201-8210. doi: 10.1021/acsami.7b01284. Epub 2017 Feb 22.
The increase of surface area and the functionalization of catalyst are crucial to development of high-performance semiconductor metal oxide (SMO) based chemiresistive gas sensors. Herein, nanoscale catalyst loaded CoO hollow nanocages (HNCs) by using metal-organic framework (MOF) templates have been developed as a new sensing platform. Nanoscale Pd nanoparticles (NPs) were easily loaded on the cavity of Co based zeolite imidazole framework (ZIF-67). The porous structure of ZIF-67 can restrict the size of Pd NPs (2-3 nm) and separate Pd NPs from each other. Subsequently, the calcination of Pd loaded ZIF-67 produced the catalytic PdO NPs functionalized CoO HNCs (PdO-CoO HNCs). The ultrasmall PdO NPs (3-4 nm) are well-distributed in the wall of CoO HNCs, the unique structure of which can provide high surface area and high catalytic activity. As a result, the PdO-CoO HNCs exhibited improved acetone sensing response (R/R = 2.51-5 ppm) compared to PdO-CoO powders (R/R = 1.98), CoO HNCs (R/R = 1.96), and CoO powders (R/R = 1.45). In addition, the PdO-CoO HNCs showed high acetone selectivity against other interfering gases. Moreover, the sensor array clearly distinguished simulated exhaled breath of diabetics from healthy people's breath. These results confirmed the novel synthesis of MOF templated nanoscale catalyst loaded SMO HNCs for high performance gas sensors.
增加催化剂的比表面积和功能化对于开发高性能半导体金属氧化物(SMO)基电阻式气敏传感器至关重要。在此,通过使用金属有机框架(MOF)模板开发了负载纳米级催化剂的 CoO 空心纳米笼(HNC)作为新型传感平台。纳米级 Pd 纳米颗粒(NPs)很容易负载在基于 Co 的沸石咪唑酯骨架(ZIF-67)的空腔中。ZIF-67 的多孔结构可以限制 Pd NPs 的尺寸(2-3nm)并将 Pd NPs 彼此分离。随后,Pd 负载 ZIF-67 的煅烧产生了功能化 CoO HNC 的催化 PdO NPs(PdO-CoO HNCs)。超小的 PdO NPs(3-4nm)均匀分布在 CoO HNC 的壁中,其独特的结构可以提供高的比表面积和高的催化活性。结果,与 PdO-CoO 粉末(R/R=1.98)、CoO HNCs(R/R=1.96)和 CoO 粉末(R/R=1.45)相比,PdO-CoO HNCs 表现出改善的丙酮传感响应(R/R=2.51-5ppm)。此外,PdO-CoO HNCs 对其他干扰气体表现出高的丙酮选择性。此外,传感器阵列清楚地区分了糖尿病患者和健康人的模拟呼气。这些结果证实了 MOF 模板化纳米级催化剂负载 SMO HNCs 用于高性能气体传感器的新型合成。