Center for Neuroscience and Cell Biology, University of Coimbra , 3004-504, Coimbra, Portugal.
Faculty of Pharmacy, University of Coimbra , Health Sciences Campus, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
Anal Chem. 2017 Feb 7;89(3):1674-1683. doi: 10.1021/acs.analchem.6b03772. Epub 2017 Jan 25.
Ceramic-based multisite Pt microelectrode arrays (MEAs) were characterized for their basic electrochemical characteristics and used for in vivo measurements of oxygen with high resolution in the brain extracellular space. The microelectrode array sites showed a very smooth surface mainly composed of thin-film polycrystalline Pt, with some apparent nanoscale roughness that was not translated into an increased electrochemical active surface area. The electrochemical cyclic voltammetric behavior was characteristic of bulk Pt in both acidic and neutral media. In addition, complex plane impedance spectra showed the required low impedance (0.22 MΩ; 10.8 Ω cm) at 1 kHz and very smooth electrode surfaces. The oxygen reduction reaction on the Pt surface proceeds as a single 4-electron reduction pathway at -0.6 V vs Ag/AgCl reference electrode. Cyclic voltammetry and amperometry demonstrate excellent electrocatalytic activity toward oxygen reduction in addition to a high sensitivity (-0.16 ± 0.02 nA μM) and a low limit of detection (0.33 ± 0.20 μM). Thus, these Pt MEAs provide an excellent microelectrode platform for multisite O recording in vivo in the extracellular space of the brain, demonstrated in anaesthetized rats, and hold promise for future in vivo studies in animal models of CNS disease and dysfunction.
基于陶瓷的多位点铂微电极阵列(MEA)具有基本的电化学特性,并用于在大脑细胞外空间中进行高分辨率的氧的活体测量。微电极阵列位点表现出非常光滑的表面,主要由薄膜多晶 Pt 组成,具有一些明显的纳米级粗糙度,但没有转化为增加的电化学活性表面积。电化学循环伏安行为在酸性和中性介质中均为块状 Pt 的特征。此外,复平面阻抗谱显示在 1 kHz 时需要低阻抗(0.22 MΩ;10.8 Ω cm)和非常光滑的电极表面。Pt 表面上的氧还原反应以 -0.6 V 相对于 Ag/AgCl 参比电极的单个 4 电子还原途径进行。循环伏安法和安培法除了具有高灵敏度(-0.16 ± 0.02 nA μM)和低检测限(0.33 ± 0.20 μM)外,还表现出对氧还原的优异电催化活性。因此,这些 Pt MEA 为在大脑细胞外空间中进行多部位 O 记录提供了一个极好的微电极平台,在麻醉大鼠中得到了证明,并为未来在中枢神经系统疾病和功能障碍的动物模型中的体内研究提供了希望。