Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA.
Phys Rev E. 2017 Jan;95(1-1):012124. doi: 10.1103/PhysRevE.95.012124. Epub 2017 Jan 17.
We analyze the stochastic dynamics of a large population of noninteracting particles driven by a global environmental input in the form of a dichotomous Markov noise process (DMNP). The population density of particle states evolves according to a stochastic Liouville equation with respect to different realizations of the DMNP. We then exploit the connection with previous work on diffusion in randomly switching environments, in order to derive moment equations for the distribution of solutions to the stochastic Liouville equation. We illustrate the theory by considering two simple examples of dichotomous flows, a velocity jump process and a two-state gene regulatory network. In both cases we show how the global environmental input induces statistical correlations between different realizations of the population density.
我们分析了由二项式马尔可夫噪声过程(DMNP)形式的全局环境输入驱动的大量非相互作用粒子的随机动力学。粒子状态的种群密度根据不同 DMNP 实现的随机刘维尔方程演化。然后,我们利用与随机切换环境中的扩散的先前工作的联系,以导出随机刘维尔方程解的分布的矩方程。我们通过考虑两个简单的二项式流示例,即速度跳跃过程和双态基因调控网络,来说明理论。在这两种情况下,我们都展示了全局环境输入如何在种群密度的不同实现之间引起统计相关性。