Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA.
Phys Rev E. 2017 Jan;95(1-1):012138. doi: 10.1103/PhysRevE.95.012138. Epub 2017 Jan 23.
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
我们推导出了一个随机场作用量的费曼-卡茨公式,这个随机场作用量是由一个分段确定性马尔可夫过程所驱动的随机混合系统的函数。我们首先为随机函数的矩生成器推导出了一个随机刘维尔方程,给定了底层离散马尔可夫过程的一个特定实现;后者在连续过程的不同动力学方程之间产生了跃迁。然后,我们使用最近为随机切换环境中的扩散过程开发的方法来分析随机刘维尔方程。特别地,我们得到了关于矩生成函数的动力学方程,该方程是针对离散马尔可夫过程的实现进行平均的。所得的费曼-卡茨公式采用微分 Chapman-Kolmogorov 方程的形式。我们通过计算一维速度跳跃过程在无限或半无限实线上的占据时间来说明该理论。最后,我们基于最近提出的随机混合系统的路径积分公式,给出了费曼-卡茨公式的另一种推导。