Suppr超能文献

在封闭系统中,集团大小分布的完全可解模型。

Exactly solvable model for cluster-size distribution in a closed system.

机构信息

St. Petersburg Academic University, Khlopina 8/3, 194021 St. Petersburg, Russia; Ioffe Physical Technical Institute of the Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg, Russia; and ITMO University, Kronverkskiy Prospekt 49, 197101 St. Petersburg, Russia.

出版信息

Phys Rev E. 2017 Jan;95(1-1):012135. doi: 10.1103/PhysRevE.95.012135. Epub 2017 Jan 20.

Abstract

We obtain an exact solution for the cluster-size distributions in a closed system described by nonlinear rate equations for irreversible homogeneous growth with size-linear agglomeration rates of the form K_{s}=D(a+s-1) for all s≥1, where D is the diffusion coefficient, s is the size, and a is a positive constant. The size spectrum is given by the Pólya distribution times a factor that normalizes the first moment of the distribution to unity and zeroes out the monomer concentration at t→∞. We show that the a value sets a maximum mean size that equals e for large a and tends to infinity only when a→0. The size distributions are monotonically decreasing in the initial stage, converting to different monomodal shapes with a maximum at s=2 in the course of growth. The variance of the distribution is narrower than Poissonian at large a and broader than Poissonian at small a, with the threshold occurring at a≅1. In most cases, the sizes present in the distributions are small and hence can hardly be described by continuum equations.

摘要

我们得到了一个封闭系统中簇大小分布的精确解,该系统由不可逆均相生长的非线性速率方程描述,其中聚集速率与大小呈线性关系,形式为 K_{s}=D(a+s-1),对于所有 s≥1,其中 D 是扩散系数,s 是大小,a 是一个正常数。大小谱由 Pólya 分布乘以一个因子给出,该因子将分布的第一矩归一化为 1,并在 t→∞时将单体浓度归零。我们表明,a 值设定了一个最大平均大小,对于大的 a 值,该值等于 e,并仅当 a→0 时才趋于无穷大。在初始阶段,大小分布单调递减,在生长过程中转换为不同的单峰形状,最大值为 s=2。分布的方差在大 a 值时比泊松分布窄,在小 a 值时比泊松分布宽,阈值发生在 a≅1 时。在大多数情况下,分布中存在的大小较小,因此很难用连续方程来描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验