Suppr超能文献

基于多种传感器的纸币识别方法综述

A Survey on Banknote Recognition Methods by Various Sensors.

作者信息

Lee Ji Woo, Hong Hyung Gil, Kim Ki Wan, Park Kang Ryoung

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2017 Feb 8;17(2):313. doi: 10.3390/s17020313.

Abstract

Despite a decrease in the use of currency due to the recent growth in the use of electronic financial transactions, real money transactions remain very important in the global market. While performing transactions with real money, touching and counting notes by hand, is still a common practice in daily life, various types of automated machines, such as ATMs and banknote counters, are essential for large-scale and safe transactions. This paper presents studies that have been conducted in four major areas of research (banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification) in the accurate banknote recognition field by various sensors in such automated machines, and describes the advantages and drawbacks of the methods presented in those studies. While to a limited extent some surveys have been presented in previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper is the first of its kind to review all four areas. Techniques used in each of the four areas recognize banknote information (denomination, serial number, authenticity, and physical condition) based on image or sensor data, and are actually applied to banknote processing machines across the world. This study also describes the technological challenges faced by such banknote recognition techniques and presents future directions of research to overcome them.

摘要

尽管由于近期电子金融交易的增长,货币的使用有所减少,但现金交易在全球市场中仍然非常重要。在用现金进行交易时,手动触摸和清点纸币在日常生活中仍然很常见,而各种自动化机器,如自动取款机和点钞机,对于大规模和安全的交易至关重要。本文介绍了在这种自动化机器中,各种传感器在准确的纸币识别领域的四个主要研究领域(纸币识别、假钞检测、序列号识别和真伪分类)所进行的研究,并描述了这些研究中所提出方法的优缺点。虽然在之前的研究中,在纸币识别或假钞识别领域已经有了一些有限的调查,但本文是第一篇对所有四个领域进行综述的文章。这四个领域中每个领域所使用的技术都基于图像或传感器数据识别纸币信息(面额、序列号、真伪和物理状况),并且实际上已应用于全球的纸币处理机器。本研究还描述了这种纸币识别技术所面临的技术挑战,并提出了克服这些挑战的未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a73a/5335928/d634f8d625c5/sensors-17-00313-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验