Suppr超能文献

基于深度学习的可见光一维线阵图像传感器反射图像的纸币真伪分类

Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor.

作者信息

Pham Tuyen Danh, Nguyen Dat Tien, Kim Wan, Park Sung Ho, Park Kang Ryoung

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2018 Feb 6;18(2):472. doi: 10.3390/s18020472.

Abstract

In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods.

摘要

在自动纸币分拣中,适应性分类是一种评估纸币质量以确定纸币是否适合再流通或应予以更换的技术。已有关于使用纸币可见光反射图像评估其可用性的研究报道。然而,其中大多数研究是在纸币面额和输入方向预先确定的假设下进行的。换句话说,需要对输入纸币的类型进行预分类。为解决这一问题,我们提出了一种基于深度学习的适应性分类方法,该方法利用可见光一维线图像传感器采集的纸币反射图像和卷积神经网络(CNN),识别纸币的适应性水平,而不考虑纸币的面额和输入系统的方向。对韩元(KRW)、印度卢比(INR)三种适应性水平以及美元(USD)两种适应性水平的纸币图像数据库进行的实验结果表明,我们的方法比其他方法具有更高的分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/723b/5856040/d618eebebc83/sensors-18-00472-g001.jpg

相似文献

8
Dataset of Indian and Thai banknotes with annotations.带有注释的印度和泰国纸币数据集。
Data Brief. 2022 Mar 2;41:108007. doi: 10.1016/j.dib.2022.108007. eCollection 2022 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验