Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University , Krijgslaan 281 (S3), B-9000 Gent, Belgium.
J Am Chem Soc. 2017 Mar 15;139(10):3697-3705. doi: 10.1021/jacs.6b11717. Epub 2017 Mar 7.
Control over the morphology of the active layer of bulk heterojunction (BHJ) organic solar cells is paramount to achieve high-efficiency devices. However, no method currently available can predict morphologies for a novel donor-acceptor blend. An approach which allows reaching relevant length scales, retaining chemical specificity, and mimicking experimental fabrication conditions, and which is suited for high-throughput schemes has been proven challenging to find. Here, we propose a method to generate atom-resolved morphologies of BHJs which conforms to these requirements. Coarse-grain (CG) molecular dynamics simulations are employed to simulate the large-scale morphological organization during solution-processing. The use of CG models which retain chemical specificity translates into a direct path to the rational design of donor and acceptor compounds which differ only slightly in chemical nature. Finally, the direct retrieval of fully atomistic detail is possible through backmapping, opening the way for improved quantum mechanical calculations addressing the charge separation mechanism. The method is illustrated for the poly(3-hexyl-thiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) mixture, and found to predict morphologies in agreement with experimental data. The effect of drying rate, P3HT molecular weight, and thermal annealing are investigated extensively, resulting in trends mimicking experimental findings. The proposed methodology can help reduce the parameter space which has to be explored before obtaining optimal morphologies not only for BHJ solar cells but also for any other solution-processed soft matter device.
控制体异质结 (BHJ) 有机太阳能电池活性层的形态对于实现高效器件至关重要。然而,目前尚无方法可以预测新型给体-受体共混物的形态。一种能够达到相关长度尺度、保留化学特异性、模拟实验制造条件且适合高通量方案的方法一直难以找到。在这里,我们提出了一种生成符合这些要求的 BHJ 原子分辨形态的方法。粗粒(CG)分子动力学模拟用于模拟溶液处理过程中的大尺度形态组织。使用保留化学特异性的 CG 模型可直接设计在化学性质上仅略有不同的给体和受体化合物。最后,通过反向映射可以直接检索到全原子细节,为解决电荷分离机制的改进量子力学计算开辟了道路。该方法以聚(3-己基噻吩)(P3HT)-苯基-C61-丁酸甲酯(PCBM)混合物为例进行了说明,结果表明所预测的形态与实验数据一致。广泛研究了干燥速率、P3HT 分子量和热退火的影响,得出的趋势与实验结果相似。所提出的方法可以帮助减少在获得最佳形态之前必须探索的参数空间,不仅对于 BHJ 太阳能电池,而且对于任何其他溶液处理的软物质器件也是如此。