Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.
Appl Microbiol Biotechnol. 2017 Apr;101(7):2629-2640. doi: 10.1007/s00253-017-8178-8. Epub 2017 Feb 16.
Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.
光是一种公认的有效手段,可以实现具有高时空分辨率的多种生物过程的控制。光遗传学开关是一种分子装置,用于调节光控基因表达、蛋白质定位、信号转导和蛋白质-蛋白质相互作用。这些分子组件主要是通过使用光受体来开发的,光受体在受到光刺激时会发生构象变化,进入激活状态。目前的光遗传学开关包括红光、蓝光和 UV-B 光受体,并已在广泛的生物平台中得到实施。在这篇综述中,我们重新审视了不同的光遗传学开关,这些开关已经在各种生物平台中得到了应用,重点介绍了那些用于控制 budding yeast Saccharomyces cerevisiae 中光控基因表达的开关。这些开关的应用克服了传统化学诱导剂的使用,能够以更低的成本、不留下化学痕迹、更精确地控制基因表达,从而积极影响高价值代谢物和异源蛋白质的生产。此外,我们还强调了通过优化该技术在工业过程中驯化的酵母中的应用,超越实验室菌株来利用这项技术的潜力。最后,我们讨论了真菌光受体如何作为开发具有改进特性的新型光遗传学开关的生物部件的来源。尽管光遗传学工具对基础研究产生了强烈的影响,但它们在应用科学中的应用仍然被低估。因此,未来的邀请是在生物技术和工业环境中利用这项技术。