Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy.
Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.
Chem Rev. 2018 Nov 14;118(21):10659-10709. doi: 10.1021/acs.chemrev.8b00163. Epub 2018 Jul 9.
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
感光感受器是生物体在自然环境中对生理、发育和行为的光依赖性适应的基础。适应光遗传学后,感光感受器成为基因编码的执行器和报告器,从而实现对细胞过程的非侵入性、时空精确和可逆的光控制。基于对天然光感受器的机制理解,已经设计出具有定制光门功能的人工光感受器,这大大扩展了光遗传学的范围,超越了最初的光控离子流应用。目前,我们可以看到,紫外/蓝光敏感光感受器尤其使光遗传学能够超越其最初的神经科学应用,通过光遗传干预解锁了许多额外的细胞过程和参数,包括基因表达、DNA 重组、亚细胞定位、细胞骨架动力学、细胞内蛋白质稳定性、信号转导级联、细胞凋亡和酶活性。新型光感受器的工程设计得益于强大且可重复使用的设计策略,最重要的是光依赖性蛋白质缔合和(解)折叠反应。此外,这些相同的感光感受器的修饰版本可用作荧光蛋白和单线态氧的产生器,从而进一步丰富了光遗传学工具包。现有的和即将推出的紫外/蓝光敏感执行器和报告器能够以越来越精确和有启发性的方式详细和定量地研究细胞信号网络和过程。