School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
Jingdezhen Ceramic Institute, Jingdezhen, China.
Sci Rep. 2017 Feb 17;7:42815. doi: 10.1038/srep42815.
Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.
长期保持闭塞后的身份仍然是斑马鱼等模式动物视频跟踪中的一个开放性问题,而准确的动物轨迹是行为分析的基础。我们利用卷积神经网络 (CNN) 的高度精确的目标识别能力来区分同种类的鱼,即使这些动物用人眼无法区分。我们使用数据增强和迭代 CNN 训练方法来优化我们的分类任务的准确性,从而在不同的时间段内实现了对不同大小和年龄的斑马鱼群体的轨迹的惊人的精确预测。这项工作将使进一步的行为分析更加可靠。