Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg , Röntgenring 11, D-97070 Würzburg, Germany.
Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universitätsklinikum Würzburg , Pleicherwall 2, D-97070 Würzburg, Germany.
Biomacromolecules. 2017 Mar 13;18(3):695-708. doi: 10.1021/acs.biomac.6b01407. Epub 2017 Feb 17.
The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.
在病理性条件下,骨骼的再生潜力会受到严重损害,例如骨折不愈合。为了支持骨再生,过去已经开发了各种支架,并对其进行了骨形成蛋白(BMPs)等成骨生长因子的功能化修饰。然而,大多数支架都需要超生理水平的这些蛋白质,导致爆发释放,从而产生严重的副作用。将 BMP2 定点、共价偶联到植入物材料上可能是克服这些问题的最佳策略。因此,我们创建了一种 BMP2 变体(BMP2-K3Plk),其中包含一个非典型氨基酸(炔丙基-l-赖氨酸)取代,通过遗传密码扩展引入,允许定点和共价固定到聚合物支架材料上。为了直接比较不同的偶联策略,我们还生产了一种含有额外半胱氨酸残基的 BMP2 变体(BMP2-A2C),允许通过硫醚形成进行共价偶联。BMP2-K3Plk 突变体通过铜催化的叠氮-炔环加成(CuAAC)直接或通过短的生物素-PEG 接头与功能化珠粒偶联,具有很高的特异性。在将 BMP 包被的珠粒暴露于 C2C12 细胞后,ALP 表达在靠近这些珠粒的局部区域受到限制,表明两种偶联的 BMP2 变体都能触发细胞分化。与非定点固定技术相比,我们的方法的优势在于能够生产完全定义的成骨表面,从而可以降低 BMP2 的负载并提高其生物活性,例如,由于控制了与 BMP2 受体的定向。这种产品可能具有更好的骨愈合能力,并具有潜在的安全性优势,因为其具有均匀的产品效果。