CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France.
Bone. 2020 Dec;141:115540. doi: 10.1016/j.bone.2020.115540. Epub 2020 Jul 27.
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
如今,人们普遍认为细胞外基质(ECM)不仅仅是生长因子的简单储存库,还是其生物活性的组织中心。在这篇综述中,我们重点关注 ECM 调节 BMP 生物活性的能力。特别是,我们调查了 ECM 成分的作用,特别是糖胺聚糖和纤维状 ECM 蛋白,它们可以促进或抑制 BMP 介导的生物学活性。我们研究了 ECM 诱导的机械转导过程如何影响 BMP 信号转导,包括细胞对 BMP 的内吞作用。我们还重点关注 BMP 的时空调节,包括它们从 ECM 中的释放,这可以调节它们的空间定位以及局部浓度。我们强调了生物材料如何再现 BMPs/ECM 相互作用的某些方面,并有助于回答基本问题,揭示以前未知的分子机制。最后,讨论了受 ECM 启发设计的新生物材料,以更好地呈现 BMPs,并强调了它们在体内更有效地促进骨再生的用途。