Suppr超能文献

基于联合稀疏表示和多视图字典学习的多视图多实例学习。

Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2554-2560. doi: 10.1109/TPAMI.2017.2669303. Epub 2017 Feb 14.

Abstract

In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

摘要

在多示例学习 (MIL) 中,袋中实例之间的关系在许多应用中传递着重要的上下文信息。之前关于 MIL 的研究要么忽略了这些关系,要么简单地用固定的图结构来建模,从而导致在复杂环境下整体性能不可避免地下降。为了解决这个问题,本文提出了一种新的多视图多示例学习算法 (MIL),该算法将袋中的多个上下文结构组合成一个统一的框架。新颖之处在于:(i)我们提出了一种稀疏图模型,该模型可以生成具有不同参数的不同图,以表示袋中不同的上下文关系;(ii)我们提出了一种多视图联合稀疏表示,将这些图集成到一个统一的框架中,用于袋分类;(iii)我们提出了一种多视图字典学习算法,以获得同时考虑所有视图线索的多视图图字典,从而提高 MIL 的判别能力。在许多实际应用中的实验和分析证明了该 MIL 的有效性。

相似文献

2
Boosting for multi-graph classification.多图分类的提升。
IEEE Trans Cybern. 2015 Mar;45(3):430-43. doi: 10.1109/TCYB.2014.2327111. Epub 2014 Jul 8.
4
Multiple Structure-View Learning for Graph Classification.用于图分类的多结构视图学习
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):3236-3251. doi: 10.1109/TNNLS.2017.2703832. Epub 2017 Sep 20.
6
Multi-Graph Multi-Label Learning Based on Entropy.基于熵的多图多标签学习
Entropy (Basel). 2018 Apr 2;20(4):245. doi: 10.3390/e20040245.
7
Constrained Multi-View Video Face Clustering.约束多视角视频人脸聚类。
IEEE Trans Image Process. 2015 Nov;24(11):4381-93. doi: 10.1109/TIP.2015.2463223. Epub 2015 Jul 30.
9
Co-Labeling for Multi-View Weakly Labeled Learning.多视图弱标签学习的联合标记。
IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1113-25. doi: 10.1109/TPAMI.2015.2476813. Epub 2015 Sep 4.
10
Multi-View Graph Learning by Joint Modeling of Consistency and Inconsistency.通过一致性和不一致性联合建模进行多视图图学习
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2848-2862. doi: 10.1109/TNNLS.2022.3192445. Epub 2024 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验