Suppr超能文献

基于多特征子集的分层融合用于历史阿拉伯手稿年代测定

Hierarchical Fusion Using Subsets of Multi-Features for Historical Arabic Manuscript Dating.

作者信息

Adam Kalthoum, Al-Maadeed Somaya, Akbari Younes

机构信息

Department of Computer Science and Engineering, Qatar University, Doha P.O. Box 2713, Qatar.

出版信息

J Imaging. 2022 Mar 1;8(3):60. doi: 10.3390/jimaging8030060.

Abstract

Automatic dating tools for historical documents can greatly assist paleographers and save them time and effort. This paper describes a novel method for estimating the date of historical Arabic documents that employs hierarchical fusions of multiple features. A set of traditional features and features extracted by a residual network (ResNet) are fused in a hierarchical approach using joint sparse representation. To address noise during the fusion process, a new approach based on subsets of multiple features is being considered. Following that, supervised and unsupervised classifiers are used for classification. We show that using hierarchical fusion based on subsets of multiple features in the KERTAS dataset can produce promising results and significantly improve the results.

摘要

历史文献的自动年代测定工具可以极大地帮助古文字学家,为他们节省时间和精力。本文描述了一种用于估计历史阿拉伯文献年代的新方法,该方法采用了多种特征的分层融合。一组传统特征和由残差网络(ResNet)提取的特征通过联合稀疏表示以分层方式进行融合。为了解决融合过程中的噪声问题,正在考虑一种基于多个特征子集的新方法。在此之后,使用监督和无监督分类器进行分类。我们表明,在KERTAS数据集中使用基于多个特征子集的分层融合可以产生有前景的结果,并显著改善结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de9/8954291/fcc3625533f4/jimaging-08-00060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验