Kovács Árpád, Kalász Judit, Pásztor Enikő T, Tóth Attila, Papp Zoltán, Dhalla Naranjan S, Barta Judit
Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
Mol Cell Biochem. 2017 Jun;430(1-2):57-68. doi: 10.1007/s11010-017-2954-8. Epub 2017 Feb 17.
This study aimed to explore the potential contribution of myofibrils to contractile dysfunction in Ca-paradox hearts. Isolated rat hearts were perfused with Krebs-Henseleit solution (Control), followed by Ca-depletion, and then Ca-repletion after Ca-depletion (Ca-paradox) by Langendorff method. During heart perfusion left ventricular developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of pressure development (+ dP/dt), and pressure decay (-dP/dt) were registered. Control LVDP (127.4 ± 6.1 mmHg) was reduced during Ca-depletion (9.8 ± 1.3 mmHg) and Ca-paradox (12.9 ± 1.3 mmHg) with similar decline in +dP/dt and -dP/dt. LVEDP was increased in both Ca-depletion and Ca-paradox. Compared to Control, myofibrillar Ca-stimulated ATPase activity was decreased in the Ca-depletion group (12.08 ± 0.57 vs. 8.13 ± 0.19 µmol P/mg protein/h), besides unvarying Mg ATPase activity, while upon Ca-paradox myofibrillar Ca-stimulated ATPase activity was decreased (12.08 ± 0.57 vs. 8.40 ± 0.22 µmol P/mg protein/h), but Mg ATPase activity was increased (3.20 ± 0.25 vs. 7.21 ± 0.36 µmol P/mg protein/h). In force measurements of isolated cardiomyocytes at saturating [Ca], Ca-depleted cells had lower rate constant of force redevelopment (k , 3.85 ± 0.21) and unchanged active tension, while those in Ca-paradox produced lower active tension (12.12 ± 3.19 kN/m) and k (3.21 ± 23) than cells of Control group (25.07 ± 3.51 and 4.61 ± 22 kN/m, respectively). In biochemical assays, α-myosin heavy chain and cardiac troponin T presented progressive degradation during Ca-depletion and Ca-paradox. Our results suggest that contractile impairment in Ca-paradox partially resides in deranged sarcomeric function and compromised myofibrillar ATPase activity as a result of myofilament protein degradation, such as α-myosin heavy chain and cardiac troponin T. Impaired relaxation seen in Ca-paradoxical hearts is apparently not related to titin, rather explained by the altered myofibrillar ATPase activity.
本研究旨在探讨肌原纤维对钙反常心脏收缩功能障碍的潜在作用。采用Langendorff法,用Krebs-Henseleit溶液灌注离体大鼠心脏(对照组),随后进行钙缺失,然后在钙缺失后进行钙再灌注(钙反常)。在心脏灌注过程中,记录左心室舒张末压(LVEDP)、左心室发展压(LVDP)、压力上升速率(+dP/dt)和压力下降速率(-dP/dt)。对照组LVDP(127.4±6.1 mmHg)在钙缺失(9.8±1.3 mmHg)和钙反常(12.9±1.3 mmHg)时降低,+dP/dt和-dP/dt有相似程度的下降。LVEDP在钙缺失和钙反常时均升高。与对照组相比,钙缺失组肌原纤维钙刺激的ATP酶活性降低(12.08±0.57 vs. 8.13±0.19 μmol P/mg蛋白/h),而镁ATP酶活性不变;在钙反常时,肌原纤维钙刺激的ATP酶活性降低(12.08±0.57 vs. 8.40±0.22 μmol P/mg蛋白/h),但镁ATP酶活性升高(3.20±0.25 vs. 7.21±0.36 μmol P/mg蛋白/h)。在对分离的心肌细胞进行的最大[Ca]力测量中,钙缺失的细胞力重建速率常数(k,3.85±0.21)较低,主动张力不变,而钙反常组细胞产生的主动张力(12.12±3.19 kN/m)和k(3.21±23)低于对照组细胞(分别为25.07±3.51和4.61±22 kN/m)。在生化分析中,α-肌球蛋白重链和心肌肌钙蛋白T在钙缺失和钙反常过程中呈现进行性降解。我们的结果表明,钙反常时的收缩功能损害部分归因于肌节功能紊乱以及由于肌丝蛋白(如α-肌球蛋白重链和心肌肌钙蛋白T)降解导致的肌原纤维ATP酶活性受损。钙反常心脏中观察到的舒张功能受损显然与肌联蛋白无关,而是由肌原纤维ATP酶活性改变所解释。