Sistig Thorsten, Lang Fanziska, Wrobel Sebastian, Baader Stephan L, Schilling Karl, Eiberger Britta
Anatomisches Institut, Anatomie and Zellbiologie, University of Bonn, Nussallee 10, 53115, Bonn, Germany.
Brain Struct Funct. 2017 Aug;222(6):2787-2805. doi: 10.1007/s00429-017-1372-8. Epub 2017 Feb 18.
Efficient coupling of the actin cytoskeleton to the cell membrane is crucial for histogenesis and maintenance of the nervous system. At this critical interface, BAR (Bin-Amphiphysin-Rvs) proteins regulate membrane bending, shown to be instrumental for mobility and morphogenesis of individual cells. Yet, the systemic significance of these proteins remains largely unexplored. Here, we probe the role of a prominent member of this protein family, the inverse-BAR protein Mtss1, for the development and function of a paradigmatic neuronal circuit, the cerebellar cortex. Mtss1-null mice show granule cell ectopias, dysmorphic Purkinje cells, malformed axons, and a protracted neurodegeneration entailing age-dependent motor deficits. In postmitotic granule cells, which transiently express Mtss1 while they migrate and form neurites, Mtss1 impinges on directional persistence and neuritogenesis. The latter effect can be specifically attributed to its exon 12a splice variant. Targeted re-expression of Mtss1 in Mtss1-null animals indicated that these pathologies were largely due to cell type-specific and intrinsic effects. Together, our results provide a mechanistic perspective on Mtss1 function for brain development and degeneration and relate it to structural features of this protein.
肌动蛋白细胞骨架与细胞膜的有效耦合对于神经系统的组织发生和维持至关重要。在这个关键界面,BAR(Bin- Amphiphysin-Rvs)蛋白调节膜弯曲,这对单个细胞的迁移和形态发生至关重要。然而,这些蛋白的系统意义在很大程度上仍未被探索。在这里,我们探究了这个蛋白家族的一个重要成员——反向BAR蛋白Mtss1,对典型神经回路——小脑皮质的发育和功能的作用。Mtss1基因敲除小鼠表现出颗粒细胞异位、浦肯野细胞畸形、轴突畸形以及伴随年龄依赖性运动缺陷的持续性神经退行性变。在有丝分裂后的颗粒细胞中,它们在迁移和形成神经突时短暂表达Mtss1,Mtss1影响定向持续性和神经突形成。后一种效应可具体归因于其外显子12a剪接变体。在Mtss1基因敲除动物中靶向重新表达Mtss1表明,这些病理状况很大程度上是由于细胞类型特异性和内在效应。总之,我们的结果为Mtss1在脑发育和退化中的功能提供了一个机制性视角,并将其与该蛋白的结构特征联系起来。