Institute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany.
Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2106921118.
How signaling units spontaneously arise from a noisy cellular background is not well understood. Here, we show that stochastic membrane deformations can nucleate exploratory dendritic filopodia, dynamic actin-rich structures used by neurons to sample its surroundings for compatible transcellular contacts. A theoretical analysis demonstrates that corecruitment of positive and negative curvature-sensitive proteins to deformed membranes minimizes the free energy of the system, allowing the formation of long-lived curved membrane sections from stochastic membrane fluctuations. Quantitative experiments show that once recruited, curvature-sensitive proteins form a signaling circuit composed of interlinked positive and negative actin-regulatory feedback loops. As the positive but not the negative feedback loop can sense the dendrite diameter, this self-organizing circuit determines filopodia initiation frequency along tapering dendrites. Together, our findings identify a receptor-independent signaling circuit that employs random membrane deformations to simultaneously elicit and limit formation of exploratory filopodia to distal dendritic sites of developing neurons.
信号单元如何自发地从嘈杂的细胞背景中出现尚不清楚。在这里,我们表明随机膜变形可以引发探索性树突丝状伪足的形成,这是神经元用来探测周围环境以寻找相容的细胞间接触的动态富含肌动蛋白的结构。理论分析表明,正向和负向曲率敏感蛋白对变形膜的核心募集使系统的自由能最小化,从而允许从随机膜波动中形成长寿命的弯曲膜段。定量实验表明,一旦被募集,曲率敏感蛋白形成一个信号通路,由相互连接的正向和负向肌动蛋白调节反馈环组成。由于正向但不是负向反馈环可以感知树突直径,因此这个自组织的通路决定了丝状伪足在逐渐变细的树突上起始的频率。总之,我们的研究结果确定了一种受体独立的信号通路,它利用随机的膜变形来同时引发和限制探索性丝状伪足在发育中的神经元的远端树突部位的形成。