Suppr超能文献

下肢蜂窝织炎诊断的预测模型:一项横断面研究。

A predictive model for diagnosis of lower extremity cellulitis: A cross-sectional study.

机构信息

Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts.

Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

J Am Acad Dermatol. 2017 Apr;76(4):618-625.e2. doi: 10.1016/j.jaad.2016.12.044. Epub 2017 Feb 16.

Abstract

BACKGROUND

Cellulitis has many clinical mimickers (pseudocellulitis), which leads to frequent misdiagnosis.

OBJECTIVE

To create a model for predicting the likelihood of lower extremity cellulitis.

METHODS

A cross-sectional review was performed of all patients admitted with a diagnosis of lower extremity cellulitis through the emergency department at a large hospital between 2010 and 2012. Patients discharged with diagnosis of cellulitis were categorized as having cellulitis, while those given an alternative diagnosis were considered to have pseudocellulitis. Bivariate associations between predictor variables and final diagnosis were assessed to develop a 4-variable model.

RESULTS

In total, 79 (30.5%) of 259 patients were misdiagnosed with lower extremity cellulitis. Of the variables associated with true cellulitis, the 4 in the final model were asymmetry (unilateral involvement), leukocytosis (white blood cell count ≥10,000/uL), tachycardia (heart rate ≥90 bpm), and age ≥70 years. We converted these variables into a points system to create the ALT-70 cellulitis score as follows: Asymmetry (3 points), Leukocytosis (1 point), Tachycardia (1 point), and age ≥70 (2 points). With this score, 0-2 points indicate ≥83.3% likelihood of pseudocellulitis, and ≥5 points indicate ≥82.2% likelihood of true cellulitis.

LIMITATIONS

Prospective validation of this model is needed before widespread clinical use.

CONCLUSION

Asymmetry, leukocytosis, tachycardia, and age ≥70 are predictive of lower extremity cellulitis. This model might facilitate more accurate diagnosis and improve patient care.

摘要

背景

蜂窝织炎有许多临床类似物(假性蜂窝织炎),这导致经常误诊。

目的

建立预测下肢蜂窝织炎可能性的模型。

方法

对 2010 年至 2012 年期间在一家大医院急诊科通过急诊诊断为下肢蜂窝织炎的所有患者进行横断面回顾。诊断为蜂窝织炎的出院患者被归类为蜂窝织炎患者,而被给予替代诊断的患者被认为是假性蜂窝织炎患者。评估预测变量与最终诊断之间的双变量关联,以建立 4 变量模型。

结果

总共 259 例患者中有 79 例(30.5%)被误诊为下肢蜂窝织炎。与真正蜂窝织炎相关的变量中,最终模型中的 4 个变量为不对称(单侧受累)、白细胞增多(白细胞计数≥10,000/μL)、心动过速(心率≥90 bpm)和年龄≥70 岁。我们将这些变量转换为积分系统,创建 ALT-70 蜂窝织炎评分如下:不对称(3 分)、白细胞增多(1 分)、心动过速(1 分)和年龄≥70(2 分)。使用该评分,0-2 分表示假性蜂窝织炎的可能性≥83.3%,≥5 分表示真正蜂窝织炎的可能性≥82.2%。

局限性

在广泛临床应用之前,需要对该模型进行前瞻性验证。

结论

不对称、白细胞增多、心动过速和年龄≥70 是预测下肢蜂窝织炎的指标。该模型可能有助于更准确地诊断,并改善患者的治疗效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验