Suppr超能文献

利用CRISPR/Cas9对非编码RNA基因进行基因组编辑开启了一种研究和治疗精神分裂症的潜在新方法。

Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia.

作者信息

Zhuo Chuanjun, Hou Weihong, Hu Lirong, Lin Chongguang, Chen Ce, Lin Xiaodong

机构信息

Department of Psychiatry, Wenzhou Seventh People's HospitalWenzhou, China; Department of Psychiatry, Tianjin Mental Health Center, Tianjin Anding HospitalTianjin, China; Department of Psychiatry, Tianjin Anning HospitalTianjin, China.

Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA.

出版信息

Front Mol Neurosci. 2017 Feb 3;10:28. doi: 10.3389/fnmol.2017.00028. eCollection 2017.

Abstract

Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.

摘要

精神分裂症是一种与遗传相关的精神疾病,其中大多数基因改变发生在人类基因组的非编码区域。在过去十年中,越来越多的调控性非编码RNA(ncRNAs),包括微小RNA(miRNAs)和长链非编码RNA(lncRNAs),已被确定与精神分裂症密切相关。然而,由于缺乏有效操纵这些ncRNA基因的技术以及缺乏合适的动物模型,对这些ncRNAs在精神分裂症病理生理学中的研究以及在恢复正常表型时逆转其基因缺陷的研究受到了阻碍。最近,一种名为成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关核酸酶9(Cas9;CRISPR/Cas9)的革命性基因编辑技术被开发出来,使研究人员能够克服这些挑战。在这篇综述文章中,我们主要关注与精神分裂症相关的ncRNAs,以及利用CRISPR/Cas9介导的对基因组DNA非编码区域的编辑来证明基因缺陷与精神分裂症病理生理学之间的因果关系。随后,我们讨论了将这种先进技术转化为精神分裂症临床治疗方法的潜力,尽管CRISPR/Cas9技术目前仍处于起步阶段,还不成熟到可用于疾病治疗。此外,我们提出了加快从实验室到临床应用步伐的策略。这篇综述描述了强大且可行的CRISPR/Cas9技术在操纵与精神分裂症相关的ncRNA基因方面的应用。由于精神分裂症与其他精神疾病存在重叠的基因改变,这项技术可以帮助研究人员解决这个复杂的健康问题,或许还能解决其他与遗传相关的精神障碍。

相似文献

1
Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia.
Front Mol Neurosci. 2017 Feb 3;10:28. doi: 10.3389/fnmol.2017.00028. eCollection 2017.
2
CRISPR/Cas9-mediated noncoding RNA editing in human cancers.
RNA Biol. 2018 Jan 2;15(1):35-43. doi: 10.1080/15476286.2017.1391443. Epub 2017 Nov 9.
3
Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.
Front Plant Sci. 2015 Nov 19;6:1001. doi: 10.3389/fpls.2015.01001. eCollection 2015.
5
The application of genome editing in studying hearing loss.
Hear Res. 2015 Sep;327:102-8. doi: 10.1016/j.heares.2015.04.016. Epub 2015 May 15.
6
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
mSphere. 2018 Jun 13;3(3). doi: 10.1128/mSphereDirect.00208-18. Print 2018 Jun 27.
7
Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
Mutat Res. 2017 Mar;797-799:1-6. doi: 10.1016/j.mrfmmm.2017.02.003. Epub 2017 Feb 28.
8
CRISPR/Cas9 for genome editing: progress, implications and challenges.
Hum Mol Genet. 2014 Sep 15;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub 2014 Mar 20.
9
CRISPR/Cas9-mediated genome editing in sea urchins.
Methods Cell Biol. 2019;151:305-321. doi: 10.1016/bs.mcb.2018.10.004. Epub 2018 Nov 29.
10
CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
J Gen Virol. 2015 Mar;96(Pt 3):626-636. doi: 10.1099/jgv.0.000012. Epub 2014 Dec 12.

引用本文的文献

1
Definition, assessment and treatment of cognitive impairment associated with schizophrenia: expert opinion and practical recommendations.
Front Psychiatry. 2024 Sep 20;15:1451832. doi: 10.3389/fpsyt.2024.1451832. eCollection 2024.
3
Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies.
Coord Chem Rev. 2023 Jul 15;487. doi: 10.1016/j.ccr.2023.215172. Epub 2023 Apr 20.
5
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance.
Cancers (Basel). 2022 Apr 24;14(9):2115. doi: 10.3390/cancers14092115.
6
The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets.
Front Cell Dev Biol. 2021 Oct 25;9:730014. doi: 10.3389/fcell.2021.730014. eCollection 2021.
7
Prospects of Non-Coding Elements in Genomic DNA Based Gene Therapy.
Curr Gene Ther. 2022;22(2):89-103. doi: 10.2174/1566523221666210419090357.
9
The research domain criteria framework in drug discovery for neuropsychiatric diseases: focus on negative valence.
Brain Neurosci Adv. 2018 Nov 7;2:2398212818804030. doi: 10.1177/2398212818804030. eCollection 2018 Jan-Dec.

本文引用的文献

2
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
3
Gene-editing research in human embryos gains momentum.
Nature. 2016 Apr 21;532(7599):289-90. doi: 10.1038/532289a.
4
CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo.
Sci Rep. 2016 Feb 29;6:22312. doi: 10.1038/srep22312.
5
Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.
Nat Neurosci. 2016 Mar;19(3):420-431. doi: 10.1038/nn.4228. Epub 2016 Feb 1.
7
Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.
Nat Biotechnol. 2016 Feb;34(2):204-9. doi: 10.1038/nbt.3440. Epub 2016 Feb 1.
8
A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle.
Science. 2016 Jan 15;351(6270):271-5. doi: 10.1126/science.aad4076.
9
Schizophrenia.
Lancet. 2016 Jul 2;388(10039):86-97. doi: 10.1016/S0140-6736(15)01121-6. Epub 2016 Jan 15.
10
In vivo gene editing in dystrophic mouse muscle and muscle stem cells.
Science. 2016 Jan 22;351(6271):407-411. doi: 10.1126/science.aad5177. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验