Slovick Brian A, Zhou You, Yu Zhi Gang, Kravchenko Ivan I, Briggs Dayrl P, Moitra Parikshit, Krishnamurthy Srini, Valentine Jason
Applied Optics Laboratory, SRI International, Menlo Park, CA 94025, USA
Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37212, USA.
Philos Trans A Math Phys Eng Sci. 2017 Mar 28;375(2090). doi: 10.1098/rsta.2016.0072.
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.This article is part of the themed issue 'New horizons for nanophotonics'.
偏振分束器是将光的两个正交偏振态分离到不同传播方向的器件,是最常见的光学元件之一。然而,传统的偏振分束器依赖于体积庞大的光学材料,而新兴的光电子和光子电路则需要紧凑的芯片级偏振分束器。在此,我们展示了圆柱形硅米氏谐振器的矩形晶格可作为偏振分束器,能有效反射一种偏振态而透射另一种偏振态。我们表明,由于矩形晶胞的二重旋转对称性,偏振分裂源于超表面的各向异性介电常数和磁导率。高偏振效率、低损耗和低外形使其非常适合与光电子和光子电路进行单片集成。本文是主题为“纳米光子学的新视野”特刊的一部分。