Suppr超能文献

平面光学与设计超表面

Flat optics with designer metasurfaces.

机构信息

Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Nat Mater. 2014 Feb;13(2):139-50. doi: 10.1038/nmat3839.

Abstract

Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

摘要

传统的光学元件,如透镜、波片和全息图,依赖于光在远大于波长的距离上传播,以实现波前的整形。在这种方式下,光的幅度、相位或偏振的实质性变化沿着光程逐渐累积。这篇综述主要关注的是最近在平面、超薄光学元件方面的进展,这些元件被称为“超表面”,可以在光束的相位、幅度和/或偏振中产生自由空间波长尺度上的急剧变化。超表面通常是通过组装微小的各向异性光散射体(即光学天线等谐振器)的阵列来创建的。天线之间的间距和它们的尺寸都远小于波长。因此,根据惠更斯原理,超表面能够通过在光散射体的光学响应中引入空间变化,将光学波前模制成具有亚波长分辨率的任意形状。这种梯度超表面超越了由周期性结构制成的频率选择表面的成熟技术,并将传统微波和毫米波发射阵列和反射阵列的功能扩展到新的光谱区域。超表面也可以通过使用具有大光学损耗的材料的超薄薄膜来创建。通过利用在有损耗材料的界面处光的反射或透射相关的可控的急剧相位变化,这种超表面就像光学上很薄的腔一样,强烈地改变光的光谱。讨论了各个光谱区域的技术机会及其在替代现有光学元件方面的潜在优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验