Suppr超能文献

MTi 中的计算生物学和化学:重点预测某些 ADMET 属性。

Computational Biology and Chemistry in MTi: Emphasis on the Prediction of Some ADMET Properties.

机构信息

Université Paris Diderot, Sorbonne Paris Cité, Molécules ThérapeutiquesIn Silico, Inserm UMR-S 973, 35 rue Helene Brion, 75013, Paris, France.

INSERM, U973, F-75205, Paris, France.

出版信息

Mol Inform. 2017 Oct;36(10). doi: 10.1002/minf.201700008. Epub 2017 Feb 21.

Abstract

Our research and teaching group called MTi (Molécules Thérapeutiques in silico) has developed numerous applications available online, thanks to the RPBS platform (Ressource Parisienne en Bioinformatique Structurale), in the field of chemoinformatics, structural bioinformatics and drug design. Since its opening in 2009, over 200 articles/reviews have been reported and involve virtual screening studies, prediction of druggability, analysis of protein-protein interaction inhibitors, development of databases, data mining and knowledge discovery, as well as combined in silico-in vitro work to search for new hits and chemical probes acting on original targets in several therapeutic areas. An international training program has also been developed pertaining to the field of in silico drug design. In this review, we present some tools developed in our laboratory with a special emphasis on the prediction of some ADMET properties, compound collection preparation and 3D-ADMET computations.

摘要

我们的研究和教学团队名为 MTi(计算机药物化学中的分子),在 chemoinformatics、structural bioinformatics 和 drug design 领域,基于 RPBS 平台(Ressource Parisienne en Bioinformatique Structurale),开发了许多在线应用程序。自 2009 年成立以来,已经发表了 200 多篇文章/综述,涉及虚拟筛选研究、可药性预测、蛋白质-蛋白质相互作用抑制剂分析、数据库开发、数据挖掘和知识发现,以及针对几个治疗领域的原创靶标,进行联合计算实验以寻找新的命中和化学探针。我们还开发了一个关于计算机药物设计领域的国际培训计划。在这篇综述中,我们介绍了我们实验室开发的一些工具,特别强调了一些 ADMET 性质的预测、化合物集合的准备和 3D-ADMET 计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验