School of Agricultural, Computational and Environmental Sciences, International Centre for Applied Climate Sciences (ICACS), Institute of Agriculture and Environment (IAg&E), University of Southern Queensland, QLD 4300, Australia.
School of Agricultural, Computational and Environmental Sciences, International Centre for Applied Climate Sciences (ICACS), Institute of Agriculture and Environment (IAg&E), University of Southern Queensland, QLD 4300, Australia.
Environ Res. 2017 May;155:141-166. doi: 10.1016/j.envres.2017.01.035. Epub 2017 Mar 10.
Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute errors were small in magnitude (±0.25), whereas the MARS and M5 Model Tree models generated 53% and 48% of such errors, respectively, indicating the latter models' errors to be distributed in larger magnitude error range. In terms of peak global UVI forecasting, with half the level of error, the ELM model outperformed MARS and M5 Model Tree. A comparison of the magnitude of hourly-cumulated errors of 10-min lead time forecasts for diffuse and global UVI highlighted ELM model's greater accuracy compared to MARS, M5 Model Tree or Pro6UV models. This confirmed the versatility of an ELM model drawing on θdata for VSTR forecasting of UVI at near real-time horizon. When applied to the goal of enhancing expert systems, ELM-based accurate forecasts capable of reacting quickly to measured conditions can enhance real-time exposure advice for the public, mitigating the potential for solar UV-exposure-related disease.
暴露于产生恶性角质形成细胞癌和相关健康风险的红斑有效太阳紫外线辐射(UVR)最好通过创新的决策支持系统来减轻,全球太阳紫外线指数(UVI)预测是提供实时防晒行为建议的必要条件。因此,UVI 预测模型是此类决策的有用工具。在这项研究中,开发了一种使用极端学习机(ELM)算法的计算高效数据驱动预测漫射和全球极短期反应(VSTR)(10 分钟提前期)UVI 的模型,该模型通过利用太阳天顶角(θ)数据得到增强。ELM 算法通常用于解决复杂和定义不明确的预测问题。位于澳大利亚图文巴的 UV 光谱辐射计测量了澳大利亚夏季期间 UVI 的每日周期(0500-1700h)。在试用了基于正弦、硬限制、对数和正切 Sigmoid 以及三角形和径向基网络的激活函数以获得最佳结果之后,开发了一种最佳的 ELM 架构,该架构在隐藏层中使用对数 Sigmoid 方程,使用θ的滞后组合作为预测数据。使用统计指标评估了 ELM 的性能:相关系数(r)、Willmott 指数(WI)、纳什-苏特克利夫效率系数(E)、均方根误差(RMSE)和观测到的和预测到的 UVI 之间的平均绝对误差(MAE)。使用这些指标,将 ELM 模型的性能与现有的方法(多元自适应回归样条(MARS)、M5 模型树和半经验(Pro6UV)晴空模型)进行了比较。根据 RMSE 和 MAE 值,ELM 模型(分别为 0.255 和 0.346)优于 MARS(分别为 0.310 和 0.438)和 M5 模型树(分别为 0.346 和 0.466)模型。与这些指标一致,ELM、MARS 和 M5 模型树模型的 Willmott 指数分别为 0.966、0.942 和 0.934。ELM 模型约 57%的绝对误差幅度较小(±0.25),而 MARS 和 M5 模型树模型分别产生 53%和 48%的此类误差,表明后两个模型的误差分布在更大的误差幅度范围内。在预测全球 VSTR 峰值 UVI 方面,ELM 模型的误差水平减半,优于 MARS 和 M5 模型树。比较了漫射和全球 UVI 的 10 分钟提前期预测的每小时累计误差的幅度,ELM 模型与 MARS、M5 模型树或 Pro6UV 模型相比,具有更高的准确性。这证实了基于 ELM 模型利用θ数据进行近实时 UVI VSTR 预测的多功能性。当应用于增强专家系统的目标时,能够快速响应测量条件的基于 ELM 的准确预测可以增强公众的实时暴露建议,从而减轻与太阳紫外线暴露相关的疾病的潜在风险。