Suppr超能文献

利用深度神经网络进行临床应用的准确地表紫外辐射预测。

Accurate surface ultraviolet radiation forecasting for clinical applications with deep neural network.

机构信息

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

出版信息

Sci Rep. 2021 Mar 3;11(1):5031. doi: 10.1038/s41598-021-84396-2.

Abstract

Exposure to appropriate doses of UV radiation provides enormously health and medical treatment benefits including psoriasis. Typical hospital-based phototherapy cabinets contain a bunch of artificial lamps, either broad-band (main emission spectrum 280-360 nm, maximum 320 nm), or narrow-band UV B irradiation (main emission spectrum 310-315 nm, maximum 311 nm). For patients who cannot access phototherapy centers, sunbathing, or heliotherapy, can be a safe and effective treatment alternative. However, as sunlight contains the full range of UV radiation (290-400 nm), careful sunbathing supervised by photodermatologist based on accurate UV radiation forecast is vital to minimize potential adverse effects. Here, using 10-year UV radiation data collected at Nakhon Pathom, Thailand, we developed a deep learning model for UV radiation prediction which achieves around 10% error for 24-h forecast and 13-16% error for 7-day up to 4-week forecast. Our approach can be extended to UV data from different geographical regions as well as various biological action spectra. This will become one of the key tools for developing national heliotherapy protocol in Thailand. Our model has been made available at https://github.com/cmb-chula/SurfUVNet .

摘要

接触适当剂量的紫外线辐射可带来极大的健康和医疗益处,包括治疗银屑病。典型的基于医院的光疗箱包含一堆人工灯,要么是宽波段(主要发射光谱 280-360nm,最大 320nm),要么是窄波段 UVB 照射(主要发射光谱 310-315nm,最大 311nm)。对于无法前往光疗中心的患者,日光浴或日光疗法是一种安全有效的替代治疗方法。然而,由于阳光包含全范围的紫外线辐射(290-400nm),需要由光皮肤病学家根据准确的紫外线辐射预测进行监督,以最小化潜在的不良反应。在这里,我们使用在泰国那空巴统收集的 10 年紫外线辐射数据,开发了一种用于紫外线辐射预测的深度学习模型,该模型对 24 小时预测的误差约为 10%,对 7 天至 4 周的预测的误差为 13-16%。我们的方法可以扩展到来自不同地理区域以及各种生物作用光谱的紫外线数据。这将成为制定泰国国家日光疗法方案的关键工具之一。我们的模型已在 https://github.com/cmb-chula/SurfUVNet 上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8002/7930112/f6d69e8733df/41598_2021_84396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验