Suppr超能文献

依赖RIMA的IYO核积累触发拟南芥中生长素不可逆的细胞分化。

RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis.

作者信息

Muñoz Alfonso, Mangano Silvina, González-García Mary Paz, Contreras Ramón, Sauer Michael, De Rybel Bert, Weijers Dolf, Sánchez-Serrano José Juan, Sanmartín Maite, Rojo Enrique

机构信息

Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain.

Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands.

出版信息

Plant Cell. 2017 Mar;29(3):575-588. doi: 10.1105/tpc.16.00791. Epub 2017 Feb 21.

Abstract

The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of causes delayed onset of cell differentiation, phenocopying the effects of knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when and activities are simultaneously reduced and is synergistically accelerated when and are concurrently overexpressed, confirming their functional interaction. Indeed, knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.

摘要

转录调节因子MINIYO(IYO)对于启动细胞分化至关重要且具有限速作用。此外,IYO在分生组织外围的细胞中从细胞质转移到细胞核,这可能触发它们的分化。然而,控制IYO核积累的遗传机制尚不清楚,并且核IYO水平升高触发分化的证据仍然只是相关性的。在寻找IYO相互作用蛋白时,我们鉴定出了RPAP2 IYO伴侣(RIMA),它是一种与选择性货物的核输入相关的酵母和人类蛋白质的同源物。敲低RIMA会导致细胞分化延迟开始,在转录组和发育水平上模拟敲低IYO的效果。此外,当RIMA和IYO的活性同时降低时,分化会完全受阻,而当RIMA和IYO同时过表达时,分化会协同加速,证实了它们的功能相互作用。实际上,敲低RIMA会降低IYO的核水平并阻止其促分化活性,支持了RIMA依赖性核IYO积累触发拟南芥细胞分化的结论。重要的是,通过分析IYO/RIMA途径对木质部极周细胞的影响,我们提供了令人信服的证据,强化了成熟植物组织从头进行器官发生和再生的能力可能存在于干细胞库中的观点。

相似文献

1
RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis.
Plant Cell. 2017 Mar;29(3):575-588. doi: 10.1105/tpc.16.00791. Epub 2017 Feb 21.
2
A molecular switch for initiating cell differentiation in Arabidopsis.
Curr Biol. 2011 Jun 21;21(12):999-1008. doi: 10.1016/j.cub.2011.04.041. Epub 2011 May 27.
4
Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis.
Development. 2010 Jan;137(1):63-71. doi: 10.1242/dev.035840.
5
Identification of Domains and Factors Involved in MINIYO Nuclear Import.
Front Plant Sci. 2019 Sep 5;10:1044. doi: 10.3389/fpls.2019.01044. eCollection 2019.
6
Local auxin competition explains fragmented differentiation patterns.
Nat Commun. 2020 Jun 11;11(1):2965. doi: 10.1038/s41467-020-16803-7.

引用本文的文献

3
C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C.
Mol Cells. 2024 Oct;47(10):100114. doi: 10.1016/j.mocell.2024.100114. Epub 2024 Sep 16.
4
Plant regeneration in the new era: from molecular mechanisms to biotechnology applications.
Sci China Life Sci. 2024 Jul;67(7):1338-1367. doi: 10.1007/s11427-024-2581-2. Epub 2024 May 31.
8
Nucleocytoplasmic Communication in Healthy and Diseased Plant Tissues.
Front Plant Sci. 2021 Jul 28;12:719453. doi: 10.3389/fpls.2021.719453. eCollection 2021.
9
Biogenesis of RNA Polymerases in Yeast.
Front Mol Biosci. 2021 Apr 28;8:669300. doi: 10.3389/fmolb.2021.669300. eCollection 2021.
10
Cryo-EM structure of mammalian RNA polymerase II in complex with human RPAP2.
Commun Biol. 2021 May 21;4(1):606. doi: 10.1038/s42003-021-02088-z.

本文引用的文献

1
PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis.
Nat Plants. 2015 Jun 29;1:15089. doi: 10.1038/nplants.2015.89.
3
Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):5101-6. doi: 10.1073/pnas.1522466113. Epub 2016 Apr 18.
4
Defining the Path from Stem Cells to Differentiated Tissue.
Curr Top Dev Biol. 2016;116:35-43. doi: 10.1016/bs.ctdb.2015.12.002. Epub 2016 Feb 8.
5
Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.
Sci Signal. 2016 Mar 1;9(417):ra24. doi: 10.1126/scisignal.aad4805.
6
Structure of GPN-Loop GTPase Npa3 and Implications for RNA Polymerase II Assembly.
Mol Cell Biol. 2015 Dec 28;36(5):820-31. doi: 10.1128/MCB.01009-15.
7
Different pathways for the nuclear import of yeast RNA polymerase II.
Biochim Biophys Acta. 2015 Nov;1849(11):1354-62. doi: 10.1016/j.bbagrm.2015.10.003. Epub 2015 Oct 8.
8
The never-ending story: from pluripotency to plant developmental plasticity.
Development. 2015 Jul 1;142(13):2237-49. doi: 10.1242/dev.117614.
9
Historical review of research on plant cell dedifferentiation.
J Plant Res. 2015 May;128(3):349-59. doi: 10.1007/s10265-015-0706-y. Epub 2015 Mar 1.
10
An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants.
Plant Cell. 2015 Feb;27(2):349-60. doi: 10.1105/tpc.114.135186. Epub 2015 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验