Suppr超能文献

变构材料的结构与协同进化

Architecture and coevolution of allosteric materials.

作者信息

Yan Le, Ravasio Riccardo, Brito Carolina, Wyart Matthieu

机构信息

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106;

Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2526-2531. doi: 10.1073/pnas.1615536114. Epub 2017 Feb 21.

Abstract

We introduce a numerical scheme to evolve functional elastic materials that can accomplish a specified mechanical task. In this scheme, the number of solutions, their spatial architectures, and the correlations among them can be computed. As an example, we consider an "allosteric" task, which requires the material to respond specifically to a stimulus at a distant active site. We find that functioning materials evolve a less-constrained trumpet-shaped region connecting the stimulus and active sites, and that the amplitude of the elastic response varies nonmonotonically along the trumpet. As previously shown for some proteins, we find that correlations appearing during evolution alone are sufficient to identify key aspects of this design. Finally, we show that the success of this architecture stems from the emergence of soft edge modes recently found to appear near the surface of marginally connected materials. Overall, our in silico evolution experiment offers a window to study the relationship between structure, function, and correlations emerging during evolution.

摘要

我们引入了一种数值方案来演化能够完成特定机械任务的功能性弹性材料。在该方案中,可以计算解的数量、它们的空间结构以及它们之间的相关性。作为一个例子,我们考虑一个“变构”任务,该任务要求材料对远处活性位点处的刺激做出特异性响应。我们发现,起作用的材料会演化出一个连接刺激位点和活性位点的约束较少的喇叭形区域,并且弹性响应的幅度沿喇叭形呈非单调变化。正如之前在一些蛋白质中所显示的那样,我们发现仅在演化过程中出现的相关性就足以识别这种设计的关键方面。最后,我们表明这种结构的成功源于最近在边缘连接材料表面附近发现的软边缘模式的出现。总体而言,我们的计算机模拟演化实验为研究演化过程中出现的结构、功能和相关性之间的关系提供了一个窗口。

相似文献

1
Architecture and coevolution of allosteric materials.变构材料的结构与协同进化
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2526-2531. doi: 10.1073/pnas.1615536114. Epub 2017 Feb 21.
2
Edge mode amplification in disordered elastic networks.无序弹性网络中的边缘模式放大。
Soft Matter. 2017 Aug 30;13(34):5795-5801. doi: 10.1039/c7sm00475c.
5
Topological Edge Floppy Modes in Disordered Fiber Networks.无序光纤网络中的拓扑边缘软模
Phys Rev Lett. 2018 Feb 9;120(6):068003. doi: 10.1103/PhysRevLett.120.068003.
7
Nonaffine correlations in random elastic media.随机弹性介质中的非仿射相关性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):066619. doi: 10.1103/PhysRevE.72.066619. Epub 2005 Dec 29.
9
Special section on biomimetics of movement.运动仿生学专题
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.

引用本文的文献

1
Shortcuts to flexible structures.通向灵活结构的捷径。
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2420375121. doi: 10.1073/pnas.2420375121. Epub 2024 Dec 2.
2
Impact of phylogeny on the inference of functional sectors from protein sequence data.系统发育对从蛋白质序列数据推断功能区的影响。
PLoS Comput Biol. 2024 Sep 23;20(9):e1012091. doi: 10.1371/journal.pcbi.1012091. eCollection 2024 Sep.
4
Learning to learn by using nonequilibrium training protocols for adaptable materials.通过使用非平衡训练协议来学习适应材料。
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2219558120. doi: 10.1073/pnas.2219558120. Epub 2023 Jun 26.
5
Microchemomechanical devices using DNA hybridization.基于 DNA 杂交的微流控机械装置。
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2023508118.
6
Engineering an Allosteric Control of Protein Function.工程化蛋白质功能的别构调控。
J Phys Chem B. 2021 Feb 25;125(7):1806-1814. doi: 10.1021/acs.jpcb.0c11640. Epub 2021 Feb 10.
7
Periodic training of creeping solids.蠕动固体的周期性训练。
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31690-31695. doi: 10.1073/pnas.1922847117. Epub 2020 Nov 30.
8
Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference.通过抗原介导的抗体干扰塑造多克隆反应。
iScience. 2020 Sep 17;23(10):101568. doi: 10.1016/j.isci.2020.101568. eCollection 2020 Oct 23.

本文引用的文献

3
Adaptive elastic networks as models of supercooled liquids.自适应弹性网络作为过冷液体的模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022310. doi: 10.1103/PhysRevE.92.022310. Epub 2015 Aug 28.
4
Evolution of sparsity and modularity in a model of protein allostery.蛋白质变构模型中稀疏性和模块化的演变
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042704. doi: 10.1103/PhysRevE.91.042704. Epub 2015 Apr 9.
5
Protein sectors: statistical coupling analysis versus conservation.蛋白质区段:统计耦合分析与保守性
PLoS Comput Biol. 2015 Feb 27;11(2):e1004091. doi: 10.1371/journal.pcbi.1004091. eCollection 2015 Feb.
7
Nonlinear conduction via solitons in a topological mechanical insulator.拓扑机械绝缘体中通过孤子的非线性传导。
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13004-9. doi: 10.1073/pnas.1405969111. Epub 2014 Aug 25.
9
Allostery in disease and in drug discovery.变构在疾病和药物发现中的作用。
Cell. 2013 Apr 11;153(2):293-305. doi: 10.1016/j.cell.2013.03.034.
10
The spatial architecture of protein function and adaptation.蛋白质功能和适应的空间结构。
Nature. 2012 Nov 1;491(7422):138-42. doi: 10.1038/nature11500. Epub 2012 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验