Suppr超能文献

1.14*CM1A-LBCC:用于凝聚相模拟的局部键电荷修正 CM1A 电荷。

1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations.

机构信息

Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3864-3870. doi: 10.1021/acs.jpcb.7b00272. Epub 2017 Mar 2.

Abstract

The quality of the 1.14CM1A and 1.20CM5 charge models was evaluated for calculations of free energies of hydration. For a set of 426 neutral molecules, 1.14CM1A and 1.20CM5 yield MADs of 1.26 and 1.21 kcal/mol, respectively. The 1.14CM1A charges, which can be readily obtained for large systems, exhibit large deviations only for a subset of functional groups. The results for these cases were systematically improved using localized bond-charge corrections (LBCC) by which offsetting adjustments are made to the partial charges for atoms in specified bond types. Only 19 LBCCs were needed to yield 1.14CM1A-LBCC charges that reduce the errors for the 426 ΔG values to only 0.61 kcal/mol. The modified charge method was also tested in computation of heats of vaporization and densities for pure organic liquids, yielding average errors of 1.40 kcal/mol and 0.024 g/cm, similar to those for 1.14*CM1A.

摘要

评估了 1.14CM1A 和 1.20CM5 电荷模型在水合自由能计算中的质量。对于 426 个中性分子的集合,1.14CM1A 和 1.20CM5 分别产生 1.26 和 1.21 kcal/mol 的 MAD。1.14CM1A 电荷可以很容易地应用于大型系统,对于一组特定的官能团,其偏离较大。通过局部键电荷校正(LBCC)系统地改进了这些情况的结果,对指定键类型的原子的部分电荷进行了抵消调整。仅需 19 个 LBCC 即可生成 1.14CM1A-LBCC 电荷,将 426 个ΔG 值的误差降低至仅 0.61 kcal/mol。该修改后的电荷方法还在纯有机液体的汽化热和密度计算中进行了测试,产生的平均误差分别为 1.40 kcal/mol 和 0.024 g/cm,与 1.14*CM1A 相似。

相似文献

1
1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations.
J Phys Chem B. 2017 Apr 20;121(15):3864-3870. doi: 10.1021/acs.jpcb.7b00272. Epub 2017 Mar 2.
2
Evaluation of CM5 Charges for Nonaqueous Condensed-Phase Modeling.
J Chem Theory Comput. 2015 Sep 8;11(9):4273-82. doi: 10.1021/acs.jctc.5b00414. Epub 2015 Aug 27.
3
Evaluation of CM5 Charges for Condensed-Phase Modeling.
J Chem Theory Comput. 2014 Jul 8;10(7):2802-2812. doi: 10.1021/ct500016d. Epub 2014 Apr 1.
4
Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
J Comput Chem. 2004 Aug;25(11):1322-32. doi: 10.1002/jcc.20059.
5
Optimal scaling factors for CM1 and CM3 atomic charges in RM1-based aqueous simulations.
J Comput Chem. 2011 Oct;32(13):2836-42. doi: 10.1002/jcc.21863. Epub 2011 Jul 5.
6
Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
J Phys Chem B. 2007 Mar 8;111(9):2242-54. doi: 10.1021/jp0667442. Epub 2007 Feb 10.
7
Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
J Phys Chem A. 2008 May 8;112(18):4342-54. doi: 10.1021/jp7108847. Epub 2008 Mar 29.
8
Quantitative evaluation of hydration thermodynamics with a continuum model.
Biophys Chem. 1994 Aug;51(2-3):359-73; discussion 373-4. doi: 10.1016/0301-4622(94)00058-1.
9
Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression.
J Comput Chem. 2013 Jul 15;34(19):1661-71. doi: 10.1002/jcc.23308. Epub 2013 May 7.

引用本文的文献

1
Tuning the Upper Critical Solution Temperature of the Polystyrene-Terpineol System toward a Low-Temperature Membrane Formation.
ACS Omega. 2025 Aug 13;10(33):38112-38121. doi: 10.1021/acsomega.5c05469. eCollection 2025 Aug 26.
3
Engineering Nanoparticle Surface Amphiphilicity: An Integrated Computational and Laser Desorption Ionization Study of Controlled Ligand Self-Assembly.
J Phys Chem C Nanomater Interfaces. 2025 Aug 13;129(33):15097-15108. doi: 10.1021/acs.jpcc.5c03644. eCollection 2025 Aug 21.
7
Liquid-liquid interfacial tension stabilized Li-metal batteries.
Nature. 2025 Jul 16. doi: 10.1038/s41586-025-09293-4.
8
Quantifying the Effect of Intermonomer Improper Angles on Electron Delocalization in Conjugated Polymers.
J Phys Chem B. 2025 Jul 24;129(29):7642-7653. doi: 10.1021/acs.jpcb.5c02849. Epub 2025 Jul 14.
9
Exploring the promise and limitations of point-charge-free potentials for hydrocarbon modeling.
Sci Rep. 2025 Jul 2;15(1):23055. doi: 10.1038/s41598-025-06558-w.

本文引用的文献

1
LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands.
Nucleic Acids Res. 2017 Jul 3;45(W1):W331-W336. doi: 10.1093/nar/gkx312.
3
Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field.
J Chem Theory Comput. 2012 Aug 14;8(8):2553-8. doi: 10.1021/ct300203w. Epub 2012 Jul 9.
4
Evaluation of CM5 Charges for Nonaqueous Condensed-Phase Modeling.
J Chem Theory Comput. 2015 Sep 8;11(9):4273-82. doi: 10.1021/acs.jctc.5b00414. Epub 2015 Aug 27.
5
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.
6
Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions.
J Comput Chem. 2015 Oct 15;36(27):2064-74. doi: 10.1002/jcc.24045. Epub 2015 Aug 27.
7
Determination of partial molar volumes from free energy perturbation theory.
Phys Chem Chem Phys. 2015 Apr 7;17(13):8407-15. doi: 10.1039/c4cp05304d. Epub 2015 Jan 15.
8
Evaluation of CM5 Charges for Condensed-Phase Modeling.
J Chem Theory Comput. 2014 Jul 8;10(7):2802-2812. doi: 10.1021/ct500016d. Epub 2014 Apr 1.
9
FreeSolv: a database of experimental and calculated hydration free energies, with input files.
J Comput Aided Mol Des. 2014 Jul;28(7):711-20. doi: 10.1007/s10822-014-9747-x. Epub 2014 Jun 14.
10
A fixed-charge model for alcohol polarization in the condensed phase, and its role in small molecule hydration.
J Phys Chem B. 2014 Jun 19;118(24):6438-46. doi: 10.1021/jp411529h. Epub 2014 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验