Dodda Leela S, Vilseck Jonah Z, Cutrona Kara J, Jorgensen William L
Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States.
J Chem Theory Comput. 2015 Sep 8;11(9):4273-82. doi: 10.1021/acs.jctc.5b00414. Epub 2015 Aug 27.
Partial atomic charges for neutral molecules from quantum mechanical calculations are typically scaled for use in molecular modeling of liquid-phase systems. Optimal scale factors of 1.14 for CM1A and 1.27 for CM5 charges were previously determined for minimizing errors in free energies of hydration. The adequacy of the 1.14CM1A and 1.27CM5 models are evaluated here in pure liquid simulations in combination with the OPLS-AA force field. For 22 organic liquids, the 1.14CM1A and 1.27CM5 models yield mean unsigned errors (MUEs) of ca. 1.40 kcal/mol for heats of vaporization. Not surprisingly, this reflects overpolarization with the scale factors derived for aqueous media. Prediction of pure liquid properties using CM5 charges is optimized using a scale factor of 1.14, which reduces the MUE for heats of vaporization to 0.89 kcal/mol. However, due to the impracticality of using different scale factors in different explicit-solvent condensed-phase simulations, a universal scale factor of 1.20 emerged for CM5 charges. This provides a balance between errors in computed pure liquid properties and free energies of hydration. Computation of free energies of hydration by the GB/SA method further found that 1.20 is equally suited for use in explicit or implicit treatments of aqueous solvation. With 1.20*CM5 charges, a variety of condensed-phase simulations can be pursued while maintaining average errors of 1.0 kcal/mol in key thermodynamic properties.
量子力学计算得出的中性分子的部分原子电荷通常会进行缩放,以便用于液相系统的分子建模。先前已确定CM1A电荷的最佳缩放因子为1.14,CM5电荷的最佳缩放因子为1.27,以最小化水合自由能的误差。本文结合OPLS-AA力场,在纯液体模拟中评估了1.14CM1A和1.27CM5模型的适用性。对于22种有机液体,1.14CM1A和1.27CM5模型的汽化热平均绝对误差(MUEs)约为1.40 kcal/mol。不出所料,这反映了使用为水性介质推导的缩放因子导致的过度极化。使用CM5电荷预测纯液体性质时,使用1.14的缩放因子进行了优化,这将汽化热的MUE降低到了0.89 kcal/mol。然而,由于在不同的显式溶剂凝聚相模拟中使用不同缩放因子不切实际,因此出现了CM5电荷的通用缩放因子1.20。这在计算的纯液体性质误差和水合自由能之间取得了平衡。通过GB/SA方法计算水合自由能进一步发现,1.20同样适用于水性溶剂化的显式或隐式处理。使用1.20*CM5电荷,可以进行各种凝聚相模拟,同时关键热力学性质的平均误差保持在1.0 kcal/mol。