Kwak No-Sang, Müller Klaus-Robert, Lee Seong-Whan
Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul, Republic of Korea.
Department of Computer Science, TU Berlin, Berlin, Germany.
PLoS One. 2017 Feb 22;12(2):e0172578. doi: 10.1371/journal.pone.0172578. eCollection 2017.
The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN's robust, accurate decoding abilities.
对神经信号进行稳健分析是一个具有挑战性的问题。在此,我们贡献了一种卷积神经网络(CNN),用于对稳态视觉诱发电位(SSVEP)范式进行稳健分类。我们在动态条件下测量基于脑电图(EEG)的SSVEP,用于脑控外骨骼,在这种情况下,大量伪迹可能会使解码恶化。所提出的CNN在这些具有挑战性的条件下被证明能实现可靠的性能。为了验证所提出的方法,我们在两种条件下获取了一个SSVEP数据集:1)静态环境,站立时注视下肢外骨骼;2)动态环境,穿着外骨骼沿着测试路线行走(在此,伪迹最具挑战性)。在离线分析中,将所提出的CNN与标准神经网络以及其他用于SSVEP解码的最新方法(即基于典型相关分析(CCA)的分类器、多变量同步指数(MSI)、结合k近邻的CCA(CCA-KNN)分类器)进行比较。我们发现CNN架构的SSVEP解码结果非常令人鼓舞,在静态和动态条件下的分类率分别超过其他方法,达到99.28%和94.03%。随后的分析检查了CNN在每一层找到的表示,从而有助于更好地理解CNN的稳健、准确解码能力。