Suppr超能文献

使用非侵入性脑机接口的高速拼写

High-speed spelling with a noninvasive brain-computer interface.

作者信息

Chen Xiaogang, Wang Yijun, Nakanishi Masaki, Gao Xiaorong, Jung Tzyy-Ping, Gao Shangkai

机构信息

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;

Swartz Center for Computational Neuroscience, University of California, San Diego, CA 92093; State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

出版信息

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67. doi: 10.1073/pnas.1508080112. Epub 2015 Oct 19.

Abstract

The past 20 years have witnessed unprecedented progress in brain-computer interfaces (BCIs). However, low communication rates remain key obstacles to BCI-based communication in humans. This study presents an electroencephalogram-based BCI speller that can achieve information transfer rates (ITRs) up to 5.32 bits per second, the highest ITRs reported in BCI spellers using either noninvasive or invasive methods. Based on extremely high consistency of frequency and phase observed between visual flickering signals and the elicited single-trial steady-state visual evoked potentials, this study developed a synchronous modulation and demodulation paradigm to implement the speller. Specifically, this study proposed a new joint frequency-phase modulation method to tag 40 characters with 0.5-s-long flickering signals and developed a user-specific target identification algorithm using individual calibration data. The speller achieved high ITRs in online spelling tasks. This study demonstrates that BCIs can provide a truly naturalistic high-speed communication channel using noninvasively recorded brain activities.

摘要

在过去20年里,脑机接口(BCI)取得了前所未有的进展。然而,低通信速率仍然是基于BCI的人类通信的关键障碍。本研究提出了一种基于脑电图的BCI拼写器,其信息传输速率(ITR)可达每秒5.32比特,这是使用非侵入性或侵入性方法的BCI拼写器中报告的最高ITR。基于视觉闪烁信号与诱发的单次试验稳态视觉诱发电位之间观察到的极高频率和相位一致性,本研究开发了一种同步调制和解调范式来实现该拼写器。具体而言,本研究提出了一种新的联合频率-相位调制方法,用0.5秒长的闪烁信号标记40个字符,并使用个体校准数据开发了一种用户特定的目标识别算法。该拼写器在在线拼写任务中实现了高ITR。本研究表明,BCI可以使用非侵入性记录的大脑活动提供一个真正自然主义的高速通信通道。

相似文献

1
High-speed spelling with a noninvasive brain-computer interface.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67. doi: 10.1073/pnas.1508080112. Epub 2015 Oct 19.
2
A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
Sensors (Basel). 2020 Feb 7;20(3):891. doi: 10.3390/s20030891.
3
A high-speed brain speller using steady-state visual evoked potentials.
Int J Neural Syst. 2014 Sep;24(6):1450019. doi: 10.1142/S0129065714500191. Epub 2014 Jun 12.
4
Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3993-6. doi: 10.1109/EMBC.2014.6944499.
5
Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
J Neural Eng. 2015 Aug;12(4):046008. doi: 10.1088/1741-2560/12/4/046008. Epub 2015 Jun 2.
6
Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
J Neurosci Methods. 2016 Jan 30;258:104-13. doi: 10.1016/j.jneumeth.2015.11.001. Epub 2015 Nov 10.
8
Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
Biomed Phys Eng Express. 2020 May 6;6(3):035034. doi: 10.1088/2057-1976/ab87e6.
9
An eighty-target high-speed Chinese BCI speller.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1652-1655. doi: 10.1109/EMBC.2017.8037157.
10
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
J Neural Eng. 2013 Apr;10(2):026001. doi: 10.1088/1741-2560/10/2/026001. Epub 2013 Jan 31.

引用本文的文献

1
High-Precision, Low-Threshold Neuromodulation With Ultraflexible Electrode Arrays for Brain-to-Brain Interfaces.
Exploration (Beijing). 2025 Apr 17;5(4):e70040. doi: 10.1002/EXP.70040. eCollection 2025 Aug.
3
Frequency tagging of spatial attention using periliminal flickers.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00223. eCollection 2024.
4
Classification of finger movements through optimal EEG channel and feature selection.
Front Hum Neurosci. 2025 Jul 16;19:1633910. doi: 10.3389/fnhum.2025.1633910. eCollection 2025.
5
6
EEG-based brain-computer interface enables real-time robotic hand control at individual finger level.
Nat Commun. 2025 Jun 30;16(1):5401. doi: 10.1038/s41467-025-61064-x.
7
P300 ERP System Utilizing Wireless Visual Stimulus Presentation Devices.
Sensors (Basel). 2025 Jun 7;25(12):3592. doi: 10.3390/s25123592.
8
[Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):464-472. doi: 10.7507/1001-5515.202310069.

本文引用的文献

1
Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
J Neural Eng. 2015 Aug;12(4):046008. doi: 10.1088/1741-2560/12/4/046008. Epub 2015 Jun 2.
2
Multi-phase cycle coding for SSVEP based brain-computer interfaces.
Biomed Eng Online. 2015 Jan 16;14:5. doi: 10.1186/1475-925X-14-5.
3
Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI.
Clin Neurophysiol. 2015 Oct;126(10):1972-8. doi: 10.1016/j.clinph.2014.12.010. Epub 2014 Dec 23.
4
Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3993-6. doi: 10.1109/EMBC.2014.6944499.
5
A high-performance keyboard neural prosthesis enabled by task optimization.
IEEE Trans Biomed Eng. 2015 Jan;62(1):21-29. doi: 10.1109/TBME.2014.2354697. Epub 2014 Sep 4.
6
A high-speed brain speller using steady-state visual evoked potentials.
Int J Neural Syst. 2014 Sep;24(6):1450019. doi: 10.1142/S0129065714500191. Epub 2014 Jun 12.
7
Visual and auditory brain-computer interfaces.
IEEE Trans Biomed Eng. 2014 May;61(5):1436-47. doi: 10.1109/TBME.2014.2300164.
8
SSVEP recognition using common feature analysis in brain-computer interface.
J Neurosci Methods. 2015 Apr 15;244:8-15. doi: 10.1016/j.jneumeth.2014.03.012. Epub 2014 Apr 13.
9
Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.
Int J Neural Syst. 2014 Jun;24(4):1450013. doi: 10.1142/S0129065714500130. Epub 2014 Jan 26.
10
Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
PLoS One. 2012;7(12):e51077. doi: 10.1371/journal.pone.0051077. Epub 2012 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验