Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , S. A. S. Nagar, Mohali, Punjab-160062, India.
J Chem Inf Model. 2017 Mar 27;57(3):594-607. doi: 10.1021/acs.jcim.6b00508. Epub 2017 Mar 6.
Membrane transporters play a crucial role in determining fate of administered drugs in a biological system. Early identification of plausible transporters for a drug molecule can provide insights into its therapeutic, pharmacokinetic, and toxicological profiles. In the present study, predictive models for classifying small molecules into substrates and nonsubstrates of various pharmaceutically important membrane transporters were developed using quantitative structure-activity relationship (QSAR) and proteochemometric (PCM) approaches. For this purpose, 4575 substrate interactions for these transporters were collected from the Metabolism and Transport Database (Metrabase) and the literature. The transporters selected for this study include (i) six efflux transporters, viz., breast cancer resistance protein (BCRP/ABCG2), P-glycoprotein (P-gp/MDR1), and multidrug resistance proteins (MRP1, MRP2, MRP3, and MRP4), and (ii) seven influx transporters, viz., organic cation transporter (OCT1/SO22A1), peptide transporter (PEPT1/SO15A1), apical sodium-bile acid transporter (ASBT/NTCP2), and organic anion transporting peptides (OATP1A2/SO1A2, OATP1B/SO1B1, OATP1B3/SO1B3, and OATP2B1/SO2B1). Various types of descriptors and machine learning methods (classifiers) were evaluated for the development of robust predictive models. Additionally, ensemble models were developed by bagging of homogeneous classifiers and selective fusion of heterogeneous classifiers. It was observed that the latter approach improves the accuracy of substrate/nonsubstrate prediction for transporters (average correct classification rate of more than 0.80 for external validation). Moreover, structural fragments important in determining the substrate specificity across the various transporters were identified. To demonstrate these fragments on the query molecule, contour maps were generated. The prediction efficacy of the developed models was illustrated by a good correlation between the reported logBB value of a molecule and its predicted substrate propensity for blood-brain barrier transporters. Conclusively, this comprehensive modeling analysis can be efficiently employed for the prediction of membrane transporters of a drug, thereby providing insights into its pharmacological profile.
膜转运蛋白在决定生物系统中 administered drugs 的命运方面起着至关重要的作用。早期鉴定药物分子的可能转运蛋白可以深入了解其治疗、药代动力学和毒理学特征。在本研究中,使用定量构效关系 (QSAR) 和蛋白组化学计量学 (PCM) 方法,为将小分子分类为各种重要膜转运蛋白的底物和非底物,开发了预测模型。为此,从代谢和转运数据库 (Metrabase) 和文献中收集了 4575 种转运蛋白的底物相互作用。本研究选择的转运蛋白包括:(i) 六种外排转运蛋白,即乳腺癌耐药蛋白 (BCRP/ABCG2)、P-糖蛋白 (P-gp/MDR1) 和多药耐药蛋白 (MRP1、MRP2、MRP3 和 MRP4),以及 (ii) 七种内流转运蛋白,即有机阳离子转运蛋白 (OCT1/SO22A1)、肽转运蛋白 (PEPT1/SO15A1)、顶端钠胆汁酸转运蛋白 (ASBT/NTCP2) 和有机阴离子转运肽 (OATP1A2/SO1A2、OATP1B/SO1B1、OATP1B3/SO1B3 和 OATP2B1/SO2B1)。评估了各种类型的描述符和机器学习方法 (分类器),以开发稳健的预测模型。此外,通过同质分类器的装袋和异质分类器的选择性融合,开发了集成模型。结果表明,后一种方法可以提高转运蛋白底物/非底物预测的准确性(外部验证的正确分类率平均超过 0.80)。此外,还确定了确定各种转运蛋白中底物特异性的重要结构片段。为了在查询分子上展示这些片段,生成了等高线图。通过与报道的分子 logBB 值与血脑屏障转运蛋白预测的底物倾向之间的良好相关性,说明了所开发模型的预测效果。总之,这种全面的建模分析可以有效地用于预测药物的膜转运蛋白,从而深入了解其药理学特征。