Suppr超能文献

通过异质有机阴离子转运多肽-配体相互作用图神经网络(HOLIgraph)预测有机阴离子转运多肽1B1(OATP1B1)的抑制剂。

Predicting inhibitors of OATP1B1 via heterogeneous OATP-ligand interaction graph neural network (HOLIgraph).

作者信息

Mardikoraem Mehrsa, Eaves Joelle N, Belecciu Theodore, Pascual Nathaniel, Aljets Alexander, Hagenbuch Bruno, Shapiro Erik M, Orlando Benjamin J, Woldring Daniel R

机构信息

Department of Chemical Engineering and Materials Science, Michigan State University, 428 S Shaw Ln, East Lansing, MI, 48824, USA.

Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI, 48824, USA.

出版信息

J Cheminform. 2025 May 5;17(1):69. doi: 10.1186/s13321-025-01020-5.

Abstract

Organic anion transporting polypeptides (OATPs) are membrane transporters crucial for drug uptake and distribution in the human body. OATPs can mediate drug-drug interactions (DDIs) in which the interaction of one drug with an OATP impairs the uptake of another drug, resulting in potentially fatal pharmacological effects. Predicting OATP-mediated DDIs is challenging, due to limited information on OATP inhibition mechanisms and inconsistent experimental OATP inhibition data across different studies. This study introduces Heterogeneous OATP-Ligand Interaction Graph Neural Network (HOLIgraph), a novel computational model that integrates molecular modeling with a graph neural network to enhance the prediction of drug-induced OATP inhibition. By combining ligand (i.e., drug) molecular features with protein-ligand interaction data from rigorous docking simulations, HOLIgraph outperforms traditional DDI prediction models which rely solely on ligand molecular features. HOLIgraph achieved a median balanced accuracy of over 90 percent when predicting inhibitors for OATP1B1, significantly outperforming purely ligand-based models. Beyond improving inhibition prediction, the data used to train HOLIgraph can enable the characterization of protein residues involved in inhibitory drug-OATP interactions. We identified certain OATP1B1 residues that preferentially interact with inhibitors, including I46 and K49. We anticipate such interaction information will be valuable to future structural and mechanistic investigations of OATP1B1.

摘要

有机阴离子转运多肽(OATPs)是膜转运蛋白,对药物在人体中的摄取和分布至关重要。OATPs可介导药物-药物相互作用(DDIs),其中一种药物与OATP的相互作用会损害另一种药物的摄取,从而产生潜在的致命药理作用。由于关于OATP抑制机制的信息有限,且不同研究中实验性OATP抑制数据不一致,预测OATP介导的DDIs具有挑战性。本研究引入了异质OATP-配体相互作用图神经网络(HOLIgraph),这是一种新型计算模型,它将分子建模与图神经网络相结合,以增强对药物诱导的OATP抑制的预测。通过将配体(即药物)分子特征与来自严格对接模拟的蛋白质-配体相互作用数据相结合,HOLIgraph优于仅依赖配体分子特征的传统DDI预测模型。在预测OATP1B1的抑制剂时,HOLIgraph的中位平衡准确率超过90%,显著优于纯基于配体的模型。除了改进抑制预测外,用于训练HOLIgraph的数据还可以对参与抑制性药物-OATP相互作用的蛋白质残基进行表征。我们确定了某些优先与抑制剂相互作用的OATP1B1残基,包括I46和K49。我们预计这种相互作用信息将对未来OATP1B1的结构和机制研究有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0202/12054207/4566a3cf0454/13321_2025_1020_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验