Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
J Chem Phys. 2017 Feb 21;146(7):074502. doi: 10.1063/1.4975690.
Molecular dynamics simulations are employed to investigate pressure-driven water and ion transport through a (9,9) carbon nanotube (CNT). We consider NaCl solutions modeled with both the TIP3P and TIP4P/2005 water models. Concentrations range from 0.25 to 2.8 mol l and temperatures from 260 to 320 K are considered. We discuss the influences on flow rates of continuum hydrodynamic considerations and molecular structural effects. We show that the flow rate of water, sodium, and chloride ions through the CNT is strongly model dependent, consistent with earlier simulations of pure water conduction. To remove the effects of different water flow rates, and clearly expose the influence of other factors on ion flow, we calculate ion transport efficiencies. Ion transport efficiencies are much smaller for TIP4P/2005 solutions than for those using the TIP3P model. Particularly at lower temperatures, the ion transport efficiencies for the TIP4P/2005 model are small, despite the fact that the nanotube conducts water at a significant rate. We trace the origin of small ion transport efficiencies to the presence of ring-like water structures within the CNT. Such structures occur commonly for the TIP4P/2005 model, but less frequently for TIP3P. The water structure acts to reduce ion "solvation" within the CNT, posing an additional barrier to ion entry and transport. Our results demonstrate that increasing the water structure within the CNT by decreasing the temperature strongly inhibits ion conduction, while still permitting significant water transport.
采用分子动力学模拟研究了(9,9)碳纳米管(CNT)中压力驱动的水和离子传输。我们考虑了使用 TIP3P 和 TIP4P/2005 水模型建模的 NaCl 溶液。考虑的浓度范围为 0.25 至 2.8 mol l,温度范围为 260 至 320 K。我们讨论了连续流体力学考虑因素和分子结构效应对流速的影响。我们表明,水、钠离子和氯离子通过 CNT 的流速强烈依赖于模型,与纯水传导的早期模拟一致。为了消除不同水流速的影响,并清楚地暴露其他因素对离子流的影响,我们计算了离子传输效率。对于 TIP4P/2005 溶液,离子传输效率远小于使用 TIP3P 模型的溶液。特别是在较低的温度下,尽管 CNT 以相当高的速率传导水,但 TIP4P/2005 模型的离子传输效率仍然很小。我们将小离子传输效率的起源追溯到 CNT 内存在环状水结构。这种结构在 TIP4P/2005 模型中很常见,但在 TIP3P 中则不太常见。水结构会降低 CNT 内离子的“溶剂化”程度,从而对离子进入和传输构成额外的障碍。我们的结果表明,通过降低温度来增加 CNT 内的水结构强烈抑制离子传导,同时仍允许大量的水传输。