Suppr超能文献

水在疏水孔中的纳米受限:跨膜蛋白 175 的分子动力学模拟及水模型的影响。

Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models.

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QU.

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, United Kingdom OX1 3PU.

出版信息

ACS Nano. 2021 Dec 28;15(12):19098-19108. doi: 10.1021/acsnano.1c06443. Epub 2021 Nov 16.

Abstract

Water molecules within biological ion channels are in a nanoconfined environment and therefore exhibit behaviors which differ from that of bulk water. Here, we investigate the phenomenon of hydrophobic gating, the process by which a nanopore may spontaneously dewet to form a "vapor lock" if the pore is sufficiently hydrophobic and/or narrow. This occurs without steric occlusion of the pore. Using molecular dynamics simulations with both rigid fixed-charge and polarizable (AMOEBA) force fields, we investigate this wetting/dewetting behavior in the transmembrane protein 175 ion channel. We examine how a range of rigid fixed-charge and polarizable water models affect wetting/dewetting in both the wild-type structure and in mutants chosen to cover a range of nanopore radii and pore-lining hydrophobicities. Crucially, we find that the rigid fixed-charge water models lead to similar wetting/dewetting behaviors, but that the polarizable water model resulted in an increased wettability of the hydrophobic gating region of the pore. This has significant implications for molecular simulations of nanoconfined water, as it implies that polarizability may need to be included if we are to gain detailed mechanistic insights into wetting/dewetting processes. These findings are of importance for the design of functionalized biomimetic nanopores (., sensing or desalination) as well as for furthering our understanding of the mechanistic processes underlying biological ion channel function.

摘要

生物离子通道中的水分子处于纳米受限环境中,因此表现出与体相水不同的行为。在这里,我们研究了疏水性门控现象,即在孔足够疏水和/或狭窄的情况下,纳米孔可能会自发去湿形成“气锁”的过程。这发生在没有孔的空间阻塞的情况下。我们使用刚性固定电荷和极化(AMOEBA)力场的分子动力学模拟,研究了跨膜蛋白 175 离子通道中的这种润湿/去湿行为。我们研究了一系列刚性固定电荷和极化水分子模型如何影响野生型结构和选择的突变体中的润湿/去湿行为,这些突变体覆盖了一系列纳米孔半径和孔衬里疏水性。至关重要的是,我们发现刚性固定电荷水分子模型导致相似的润湿/去湿行为,但极化水分子模型导致孔的疏水性门控区域的润湿性增加。这对纳米受限水中的分子模拟具有重要意义,因为如果我们要深入了解润湿/去湿过程的机械机制,就需要包含极化性。这些发现对于功能化仿生纳米孔(例如传感或脱盐)的设计以及进一步了解生物离子通道功能的机械过程具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a5/7612143/5f40644ae4f5/EMS138803-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验