Hu Yinan, Nelson-Maney Nathan, Anderson Philip S L
Department of Biological Sciences, University of Rhode Island, CBLS 440, Kingston, Rhode Island, 02881.
Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center, Amherst, Massachusetts, 01003.
Evolution. 2017 May;71(5):1397-1405. doi: 10.1111/evo.13208. Epub 2017 Mar 17.
Comparative biomechanics offers an opportunity to explore the evolution of disparate biological systems that share common underlying mechanics. Four-bar linkage modeling has been applied to various biological systems such as fish jaws and crustacean appendages to explore the relationship between biomechanics and evolutionary diversification. Mechanical sensitivity states that the functional output of a mechanical system will show differential sensitivity to changes in specific morphological components. We document similar patterns of mechanical sensitivity in two disparate four-bar systems from different phyla: the opercular four-bar system in centrarchid fishes and the raptorial appendage of stomatopods. We built dynamic linkage models of 19 centrarchid and 36 stomatopod species and used phylogenetic generalized least squares regression (PGLS) to compare evolutionary shifts in linkage morphology and mechanical outputs derived from the models. In both systems, the kinematics of the four-bar mechanism show significant evolutionary correlation with the output link, while travel distance of the output arm is correlated with the coupler link. This common evolutionary pattern seen in both fish and crustacean taxa is a potential consequence of the mechanical principles underlying four-bar systems. Our results illustrate the potential influence of physical principles on morphological evolution across biological systems with different structures, behaviors, and ecologies.
比较生物力学提供了一个机会,来探索具有共同潜在力学原理的不同生物系统的进化。四杆连杆模型已被应用于各种生物系统,如鱼颚和甲壳类动物的附肢,以探索生物力学与进化多样化之间的关系。机械敏感性表明,机械系统的功能输出将对特定形态组成部分的变化表现出不同的敏感性。我们在来自不同门的两个不同的四杆系统中记录了类似的机械敏感性模式:鲈形目鱼类的鳃盖四杆系统和口足类动物的捕食性附肢。我们构建了19种鲈形目鱼类和36种口足类动物的动态连杆模型,并使用系统发育广义最小二乘回归(PGLS)来比较连杆形态的进化变化和从模型得出的机械输出。在这两个系统中,四杆机构的运动学与输出连杆显示出显著的进化相关性,而输出臂的行程距离与连杆相关。在鱼类和甲壳类类群中看到的这种共同进化模式,是四杆系统潜在力学原理的一个可能结果。我们的结果说明了物理原理对具有不同结构、行为和生态的生物系统形态进化的潜在影响。