Holland Katharina, Gubern-Mérida Albert, Mann Ritse M, Karssemeijer Nico
Radboud University Medical Center, Nijmegen, The Netherlands.
Phys Med Biol. 2017 May 7;62(9):3779-3797. doi: 10.1088/1361-6560/aa628f. Epub 2017 Feb 23.
Fibroglandular tissue volume and percent density can be estimated in unprocessed mammograms using a physics-based method, which relies on an internal reference value representing the projection of fat only. However, pixels representing fat only may not be present in dense breasts, causing an underestimation of density measurements. In this work, we investigate alternative approaches for obtaining a tissue reference value to improve density estimations, particularly in dense breasts. Two of three investigated reference values (F1, F2) are percentiles of the pixel value distribution in the breast interior (the contact area of breast and compression paddle). F1 is determined in a small breast interior, which minimizes the risk that peripheral pixels are included in the measurement at the cost of increasing the chance that no proper reference can be found. F2 is obtained using a larger breast interior. The new approach which is developed for very dense breasts does not require the presence of a fatty tissue region. As reference region we select the densest region in the mammogram and assume that this represents a projection of entirely dense tissue embedded between the subcutaneous fatty tissue layers. By measuring the thickness of the fat layers a reference (F3) can be computed. To obtain accurate breast density estimates irrespective of breast composition we investigated a combination of the results of the three reference values. We collected 202 pairs of MRI's and digital mammograms from 119 women. We compared the percent dense volume estimates based on both modalities and calculated Pearson's correlation coefficients. With the references F1-F3 we found respectively a correlation of [Formula: see text], [Formula: see text] and [Formula: see text]. Best results were obtained with the combination of the density estimations ([Formula: see text]). Results show that better volumetric density estimates can be obtained with the hybrid method, in particular for dense breasts, when algorithms are combined to obtain a fatty tissue reference value depending on breast composition.
使用基于物理的方法可以在未经处理的乳房X线照片中估计纤维腺组织体积和密度百分比,该方法依赖于仅表示脂肪投影的内部参考值。然而,在致密型乳房中可能不存在仅代表脂肪的像素,从而导致密度测量值被低估。在这项工作中,我们研究了获取组织参考值以改善密度估计的替代方法,特别是在致密型乳房中。所研究的三个参考值(F1、F2)中的两个是乳房内部(乳房与压迫板的接触区域)像素值分布的百分位数。F1是在较小的乳房内部确定的,这将包含外围像素进行测量的风险降至最低,但代价是增加了找不到合适参考值的可能性。F2是使用较大的乳房内部获得的。为极致密型乳房开发的新方法不需要存在脂肪组织区域。作为参考区域,我们选择乳房X线照片中最致密的区域,并假设这代表了嵌入皮下脂肪组织层之间的完全致密组织的投影。通过测量脂肪层的厚度,可以计算出一个参考值(F3)。为了无论乳房组成如何都能获得准确的乳房密度估计,我们研究了三个参考值结果的组合。我们收集了119名女性的202对MRI和数字乳房X线照片。我们比较了基于两种模态的致密体积百分比估计值,并计算了皮尔逊相关系数。使用参考值F1 - F3时,我们分别发现相关性为[公式:见原文]、[公式:见原文]和[公式:见原文]。密度估计值组合([公式:见原文])获得了最佳结果。结果表明,当结合算法以根据乳房组成获得脂肪组织参考值时,混合方法可以获得更好的体积密度估计,特别是对于致密型乳房。