Suppr超能文献

利用乳腺体积密度图对乳腺钼靶筛查中的掩盖风险进行量化。

Quantification of masking risk in screening mammography with volumetric breast density maps.

作者信息

Holland Katharina, van Gils Carla H, Mann Ritse M, Karssemeijer Nico

机构信息

Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.

出版信息

Breast Cancer Res Treat. 2017 Apr;162(3):541-548. doi: 10.1007/s10549-017-4137-4. Epub 2017 Feb 4.

Abstract

PURPOSE

Fibroglandular tissue may mask breast cancers, thereby reducing the sensitivity of mammography. Here, we investigate methods for identification of women at high risk of a masked tumor, who could benefit from additional imaging.

METHODS

The last negative screening mammograms of 111 women with interval cancer (IC) within 12 months after the examination and 1110 selected normal screening exams from women without cancer were used. From the mammograms, volumetric breast density maps were computed, which provide the dense tissue thickness for each pixel location. With these maps, three measurements were derived: (1) percent dense volume (PDV), (2) percent area where dense tissue thickness exceeds 1 cm (PDA), and (3) dense tissue masking model (DTMM). Breast density was scored by a breast radiologist using BI-RADS. Women with heterogeneously and extremely dense breasts were considered at high masking risk. For each masking measure, mammograms were divided into a high- and low-risk category such that the same proportion of the controls is at high masking risk as with BI-RADS.

RESULTS

Of the women with IC, 66.1, 71.9, 69.2, and 63.0% were categorized to be at high masking risk with PDV, PDA, DTMM, and BI-RADS, respectively, against 38.5% of the controls. The proportion of IC at high masking risk is statistically significantly different between BI-RADS and PDA (p-value 0.022). Differences between BI-RADS and PDV, or BI-RADS and DTMM, are not statistically significant.

CONCLUSION

Measures based on density maps, and in particular PDA, are promising tools to identify women at high risk for a masked cancer.

摘要

目的

纤维腺组织可能掩盖乳腺癌,从而降低乳腺钼靶检查的敏感性。在此,我们研究识别有隐匿性肿瘤高风险女性的方法,这些女性可能受益于额外的影像学检查。

方法

使用111名在检查后12个月内发生间期癌(IC)的女性的最后一次阴性筛查乳腺钼靶图像,以及从无癌女性中选取的1110例正常筛查检查图像。从乳腺钼靶图像中计算出乳腺体积密度图,该图可提供每个像素位置的致密组织厚度。利用这些图得出三项测量值:(1)致密体积百分比(PDV),(2)致密组织厚度超过1厘米的面积百分比(PDA),以及(3)致密组织掩盖模型(DTMM)。乳腺密度由一名乳腺放射科医生使用乳腺影像报告和数据系统(BI-RADS)进行评分。乳腺组织为不均匀致密和极度致密的女性被视为高掩盖风险人群。对于每种掩盖测量方法,乳腺钼靶图像被分为高风险和低风险类别,以使对照组中处于高掩盖风险的比例与BI-RADS分类的比例相同。

结果

在患有IC的女性中,分别有66.1%、71.9%、69.2%和63.0%的女性根据PDV、PDA、DTMM和BI-RADS被归类为高掩盖风险人群,而对照组的这一比例为38.5%。BI-RADS和PDA之间,处于高掩盖风险的IC比例在统计学上有显著差异(p值为0.022)。BI-RADS与PDV或BI-RADS与DTMM之间的差异无统计学意义。

结论

基于密度图的测量方法,尤其是PDA,是识别有隐匿性癌症高风险女性的有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1268/5332492/912111909430/10549_2017_4137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验