Hurd Thomas R, Gleeson James P, Melnik Sergey
Department of Mathematics, McMaster University, Hamilton, Ontario, Canada.
MACSI, Department of Mathematics & Statistics, University of Limerick, Limerick, Ireland.
PLoS One. 2017 Feb 23;12(2):e0170579. doi: 10.1371/journal.pone.0170579. eCollection 2017.
We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk.
我们引入了一个概率框架,该框架用于表示程式化的银行网络,目的是预测传染事件的规模。先前关于随机金融网络的大多数工作都假定银行之间的连接是独立的,而我们的框架明确允许(非)同类边概率(即小银行倾向于与大银行建立联系)。我们分析了因网络冲击引发的违约级联,发现该级联可以理解为在一组边概率上的显式迭代映射,该映射收敛到一个固定点。我们推导了一个级联条件,类似于流行病建模中的基本再生数(R_0),它表征了单个初始违约银行是否能够引发扩展到无限网络有限部分的级联。这个级联条件是给定银行网络拓扑结构中固有系统风险的一个易于计算的度量。我们使用随机网络的渗流理论来推导全局级联频率的公式。这些分析结果表明,与有限规模网络的蒙特卡罗模拟研究相比,定量一致性有限。我们表明,边同类性(节点连接到相似节点的倾向)对由级联条件衡量的系统风险水平可能有很大影响。然而,同类性对系统风险的影响很微妙,我们提出了一个简单的图论量,我们称之为图同类性系数,可用于评估系统风险。