Krause Sebastian M, Štefančić Hrvoje, Caldarelli Guido, Zlatić Vinko
Division of Theoretical Physics, Rudjer Bošković Institute, 10000 Zagreb, Croatia.
Faculty of Physics, University of Duisburg-Essen, 47057 Dusiburg, Germany.
Phys Rev E. 2021 Apr;103(4-1):042304. doi: 10.1103/PhysRevE.103.042304.
Evaluation of systemic risk in networks of financial institutions in general requires information of interinstitution financial exposures. In the framework of the DebtRank algorithm, we introduce an approximate method of systemic risk evaluation which requires only node properties, such as total assets and liabilities, as inputs. We demonstrate that this approximation captures a large portion of systemic risk measured by DebtRank. Furthermore, using Monte Carlo simulations, we investigate network structures that can amplify systemic risk. Indeed, while no topology in general sense is a priori more stable if the market is liquid (i.e., the price of transaction creation is small) [T. Roukny et al., Sci. Rep. 3, 2759 (2013)10.1038/srep02759], a larger complexity is detrimental for the overall stability [M. Bardoscia et al., Nat. Commun. 8, 14416 (2017)10.1038/ncomms14416]. Here we find that the measure of scalar assortativity correlates well with level of systemic risk. In particular, network structures with high systemic risk are scalar assortative, meaning that risky banks are mostly exposed to other risky banks. Network structures with low systemic risk are scalar disassortative, with interactions of risky banks with stable banks.
一般而言,评估金融机构网络中的系统性风险需要机构间金融风险敞口的信息。在债务排名算法的框架下,我们引入了一种系统性风险评估的近似方法,该方法仅需要节点属性(如总资产和负债)作为输入。我们证明,这种近似方法能够捕捉到债务排名所衡量的大部分系统性风险。此外,通过蒙特卡罗模拟,我们研究了可能放大系统性风险的网络结构。实际上,如果市场具有流动性(即交易创造的价格较小),一般意义上没有哪种拓扑结构天生更稳定 [T. Roukny等人,《科学报告》3, 2759 (2013)10.1038/srep02759],但更大的复杂性对整体稳定性不利 [M. Bardoscia等人,《自然通讯》8, 14416 (2017)10.1038/ncomms14416]。在这里,我们发现标量 assortativity 的度量与系统性风险水平密切相关。特别是,具有高系统性风险的网络结构是标量 assortative 的,这意味着风险较高的银行大多与其他风险较高的银行有风险敞口。具有低系统性风险的网络结构是标量 disassortative 的,风险较高的银行与稳定银行之间存在相互作用。