Suppr超能文献

用于多主题情感分析的数据驱动上下文效价转移器量化

Data-Driven Contextual Valence Shifter Quantification for Multi-Theme Sentiment Analysis.

作者信息

Yu Hongkun, Shang Jingbo, Hsu Meichun, Castellanos Malú, Han Jiawei

机构信息

Computer Science Department, University of Illinois at Urbana-Champaign, IL, USA.

HPE Vertica, CA, USA.

出版信息

Proc ACM Int Conf Inf Knowl Manag. 2016 Oct;2016:939-948. doi: 10.1145/2983323.2983793.

Abstract

Users often write reviews on different themes involving linguistic structures with complex sentiments. The sentiment polarity of a word can be different across themes. Moreover, contextual valence shifters may change sentiment polarity depending on the contexts that they appear in. Both challenges cannot be modeled effectively and explicitly in traditional sentiment analysis. Studying both phenomena requires multi-theme sentiment analysis at the word level, which is very interesting but significantly more challenging than overall polarity classification. To simultaneously resolve the and problems, we propose a data-driven framework to enable both capabilities: (1) polarity predictions of the same word in reviews of different themes, and (2) discovery and quantification of contextual valence shifters. The framework formulates multi-theme sentiment by factorizing the review sentiments with theme/word embeddings and then derives the shifter effect learning problem as a logistic regression. The improvement of sentiment polarity classification accuracy demonstrates not only the importance of and , but also effectiveness of our framework. Human evaluations and case studies further show the success of multi-theme word sentiment predictions and automatic effect quantification of contextual valence shifters.

摘要

用户经常围绕涉及复杂情感的语言结构的不同主题撰写评论。一个词的情感极性可能因主题而异。此外,上下文价转移词可能会根据它们出现的上下文改变情感极性。在传统情感分析中,这两个挑战都无法得到有效且明确的建模。研究这两种现象需要在词级进行多主题情感分析,这非常有趣,但比整体极性分类更具挑战性。为了同时解决这两个问题,我们提出了一个数据驱动的框架来实现这两种能力:(1)对不同主题评论中同一个词的极性预测,以及(2)上下文价转移词的发现和量化。该框架通过用主题/词嵌入对评论情感进行分解来制定多主题情感,然后将转移效应学习问题推导为逻辑回归。情感极性分类准确率的提高不仅证明了这两个问题的重要性,也证明了我们框架的有效性。人工评估和案例研究进一步表明了多主题词情感预测和上下文价转移词自动效应量化的成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad4/5319421/30c2ef241c99/nihms845630f1.jpg

相似文献

4
A global optimization approach to multi-polarity sentiment analysis.一种用于多极性情感分析的全局优化方法。
PLoS One. 2015 Apr 24;10(4):e0124672. doi: 10.1371/journal.pone.0124672. eCollection 2015.
6
CIDER: Context-sensitive polarity measurement for short-form text.CIDER:用于短文本的上下文敏感极性测量。
PLoS One. 2024 Apr 18;19(4):e0299490. doi: 10.1371/journal.pone.0299490. eCollection 2024.
10
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning.利用词嵌入和迁移学习扩充语义词典
Front Artif Intell. 2022 Jan 24;4:783778. doi: 10.3389/frai.2021.783778. eCollection 2021.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验