Department of Engineering, Siauliai University, Siauliai, Lithuania.
Humanities Laboratory, Lund University, Lund, Sweden.
Behav Res Methods. 2018 Feb;50(1):160-181. doi: 10.3758/s13428-017-0860-3.
Event detection is a challenging stage in eye movement data analysis. A major drawback of current event detection methods is that parameters have to be adjusted based on eye movement data quality. Here we show that a fully automated classification of raw gaze samples as belonging to fixations, saccades, or other oculomotor events can be achieved using a machine-learning approach. Any already manually or algorithmically detected events can be used to train a classifier to produce similar classification of other data without the need for a user to set parameters. In this study, we explore the application of random forest machine-learning technique for the detection of fixations, saccades, and post-saccadic oscillations (PSOs). In an effort to show practical utility of the proposed method to the applications that employ eye movement classification algorithms, we provide an example where the method is employed in an eye movement-driven biometric application. We conclude that machine-learning techniques lead to superior detection compared to current state-of-the-art event detection algorithms and can reach the performance of manual coding.
事件检测是眼动数据分析中的一个具有挑战性的阶段。当前事件检测方法的一个主要缺点是,参数必须根据眼动数据质量进行调整。在这里,我们展示了一种使用机器学习方法对原始注视样本进行分类的方法,即将其分类为注视、扫视或其他眼动事件。任何已经手动或自动检测到的事件都可以用于训练分类器,以便对其他数据进行类似的分类,而无需用户设置参数。在这项研究中,我们探索了随机森林机器学习技术在注视、扫视和扫视后振荡(PSO)检测中的应用。为了向使用眼动分类算法的应用展示该方法的实际应用,我们提供了一个示例,其中该方法被用于眼动驱动的生物识别应用中。我们得出结论,与当前最先进的事件检测算法相比,机器学习技术可以实现更优的检测效果,并且可以达到手动编码的性能。